==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 17-DEC-02 1NG8 . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.S.SHAM,L.E.TOWNSLEY,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2517.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32106.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 78 0, 0.0 20,-2.5 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 152.5 3.8 1.4 1.2 2 2 A G E -aB 8 20A 26 5,-2.4 7,-2.2 18,-0.2 2,-0.3 -0.753 360.0 -0.6 121.8 -82.0 3.7 1.5 -2.6 3 3 A A E S+aB 9 19A 32 16,-2.6 16,-2.6 -2,-0.5 2,-0.5 -0.994 109.2 23.4-149.4 150.4 0.2 2.1 -4.0 4 4 A X E S-aB 10 18A 49 5,-2.8 7,-2.6 -2,-0.3 2,-0.4 -0.910 116.3 -1.3 93.1-124.6 -3.4 2.6 -2.6 5 5 A A E S+a 11 0A 14 12,-2.5 2,-0.3 -2,-0.5 7,-0.2 -0.854 109.0 35.1-105.2 136.5 -3.2 3.9 1.1 6 6 A X E S-a 12 0A 50 5,-2.0 7,-2.5 -2,-0.4 2,-0.7 -0.996 112.3 -10.7 134.7-135.3 0.0 4.5 3.1 7 7 A V E S+a 13 0A 63 -2,-0.3 -5,-2.4 5,-0.2 2,-0.3 -0.906 118.0 39.4 -99.0 107.3 3.4 5.9 1.9 8 8 A X E S-a 2 0A 65 5,-2.8 7,-2.0 -2,-0.7 2,-0.7 -0.984 102.3 -5.8 148.9-150.2 3.2 5.8 -2.0 9 9 A W E S+a 3 0A 165 -7,-2.2 -5,-2.8 -2,-0.3 2,-0.3 -0.773 109.6 7.9 -97.0 109.1 0.5 6.5 -4.7 10 10 A X E S+a 4 0A 80 5,-2.6 2,-0.3 -2,-0.7 -5,-0.2 -0.810 111.0 22.2 143.3 -89.1 -3.2 7.4 -3.7 11 11 A W E S+a 5 0A 164 -7,-2.6 -5,-2.0 -2,-0.3 2,-0.9 -0.811 107.4 15.7-107.1 150.6 -4.1 8.0 -0.0 12 12 A X E S-a 6 0A 114 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.768 113.0 -5.3 102.7 -89.1 -1.9 9.0 3.0 13 13 A W E S+a 7 0A 154 -7,-2.5 -5,-2.8 -2,-0.9 2,-0.6 -0.999 105.5 14.7-146.3 140.4 1.5 10.4 1.9 14 14 A X E a 8 0A 150 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.893 360.0 360.0 109.0-107.7 3.5 10.8 -1.4 15 15 A G 0 0 56 -7,-2.0 -5,-2.6 -2,-0.6 -7,-0.1 -0.461 360.0 360.0-102.2 360.0 1.7 10.5 -4.8 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 77 0, 0.0 -12,-2.5 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 152.5 -3.7 -1.1 1.8 18 2 B G E -Bc 4 24A 26 5,-2.4 7,-2.2 -14,-0.2 2,-0.3 -0.752 360.0 -0.5 121.7 -82.0 -3.9 -2.0 -2.0 19 3 B A E S+Bc 3 25A 33 -16,-2.6 -16,-2.6 -2,-0.5 2,-0.5 -0.995 109.2 23.4-149.4 150.5 -0.4 -2.8 -3.6 20 4 B X E S-Bc 2 26A 49 5,-2.8 7,-2.6 -2,-0.3 2,-0.4 -0.911 116.3 -1.3 93.1-124.6 3.2 -3.0 -2.3 21 5 B A E S+ c 0 27A 15 -20,-2.5 2,-0.3 -2,-0.5 7,-0.2 -0.853 109.0 35.1-105.2 136.5 3.3 -3.6 1.5 22 6 B X E S- c 0 28A 48 5,-2.0 7,-2.5 -2,-0.4 2,-0.7 -0.996 112.3 -10.7 134.7-135.3 0.2 -3.9 3.9 23 7 B V E S+ c 0 29A 64 -2,-0.3 -5,-2.4 5,-0.2 2,-0.3 -0.906 118.0 39.4 -99.0 107.4 -3.3 -5.4 3.1 24 8 B X E S-cc 18 30A 68 5,-2.8 7,-2.0 -2,-0.7 2,-0.7 -0.984 102.3 -5.7 148.8-150.2 -3.3 -6.1 -0.7 25 9 B W E S+c 19 0A 163 -7,-2.2 -5,-2.8 -2,-0.3 2,-0.3 -0.773 109.6 7.9 -97.0 109.1 -0.8 -7.3 -3.4 26 10 B X E S+c 20 0A 80 5,-2.6 2,-0.3 -2,-0.7 -5,-0.2 -0.809 111.0 22.2 143.3 -89.1 2.9 -7.9 -2.6 27 11 B W E S+c 21 0A 166 -7,-2.6 -5,-2.0 -2,-0.3 2,-0.9 -0.811 107.4 15.7-107.0 150.7 4.1 -7.9 1.1 28 12 B X E S-c 22 0A 111 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.767 113.0 -5.3 102.6 -89.0 2.2 -8.3 4.4 29 13 B W E S+c 23 0A 152 -7,-2.5 -5,-2.8 -2,-0.9 2,-0.6 -0.999 105.5 14.7-146.3 140.4 -1.3 -9.8 3.9 30 14 B X E c 24 0A 149 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.893 360.0 360.0 109.0-107.7 -3.5 -10.9 0.9 31 15 B G 0 0 56 -7,-2.0 -5,-2.6 -2,-0.6 -7,-0.1 -0.461 360.0 360.0-102.3 360.0 -2.0 -11.2 -2.7