==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 19-DEC-02 1NH9 . COMPND 2 MOLECULE: DNA-BINDING PROTEIN ALBA; . SOURCE 2 ORGANISM_SCIENTIFIC: METHANOCALDOCOCCUS JANNASCHII; . AUTHOR G.WANG,M.BARTLAM,R.GUO,H.YANG,H.XUE,Y.LIU,L.HUANG,Z.RAO . 80 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5188.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 64 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 19 23.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 30.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 202 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 148.0 -21.1 15.7 -187.4 2 2 A D - 0 0 97 2,-0.1 27,-0.0 1,-0.1 0, 0.0 -0.055 360.0-109.4 -77.9-172.8 -20.7 18.8 -185.3 3 3 A N S S+ 0 0 33 2,-0.0 27,-2.9 20,-0.0 2,-0.3 -0.088 71.7 121.5-114.1 34.4 -18.6 21.9 -186.3 4 4 A V E -a 30 0A 25 25,-0.2 2,-0.5 27,-0.1 27,-0.2 -0.789 40.7-165.6-105.8 142.4 -15.6 21.6 -184.0 5 5 A V E -a 31 0A 9 25,-3.0 27,-2.2 -2,-0.3 2,-0.7 -0.979 13.5-149.6-125.8 115.2 -12.0 21.3 -184.8 6 6 A L E -a 32 0A 122 -2,-0.5 2,-0.6 25,-0.2 27,-0.2 -0.757 13.0-144.9 -86.7 113.9 -9.7 20.2 -181.9 7 7 A I E +a 33 0A 9 25,-3.4 27,-0.5 -2,-0.7 34,-0.1 -0.703 38.5 140.5 -85.1 119.3 -6.3 21.7 -182.3 8 8 A G - 0 0 26 -2,-0.6 -1,-0.1 25,-0.1 7,-0.1 -0.126 64.0 -40.3-126.2-134.4 -3.5 19.4 -181.1 9 9 A K S S+ 0 0 192 -2,-0.1 3,-0.1 2,-0.0 -2,-0.1 0.519 92.8 108.5 -82.0 -7.5 -0.0 18.3 -182.1 10 10 A K S S- 0 0 109 1,-0.1 5,-0.1 2,-0.1 -2,-0.0 -0.240 84.1 -81.0 -69.0 160.6 -0.5 18.0 -185.9 11 11 A P >> - 0 0 83 0, 0.0 3,-1.5 0, 0.0 4,-1.0 -0.316 42.8-112.0 -61.9 145.4 1.1 20.6 -188.2 12 12 A V H >> S+ 0 0 37 1,-0.3 4,-1.9 2,-0.2 3,-0.6 0.834 113.8 60.1 -44.9 -43.3 -0.8 23.9 -188.5 13 13 A M H 3> S+ 0 0 92 1,-0.2 4,-2.4 2,-0.2 -1,-0.3 0.830 96.5 59.8 -60.7 -33.6 -1.8 23.3 -192.2 14 14 A N H <> S+ 0 0 67 -3,-1.5 4,-1.8 1,-0.2 -1,-0.2 0.900 109.9 43.2 -59.5 -42.1 -3.6 20.1 -191.3 15 15 A Y H X S+ 0 0 86 -4,-2.4 3,-1.0 1,-0.2 4,-0.5 0.933 110.8 45.0 -59.7 -46.3 -13.6 21.3 -194.5 22 22 A Q H >X S+ 0 0 15 -4,-2.1 4,-1.5 1,-0.3 3,-1.1 0.860 107.0 59.4 -66.0 -37.1 -16.0 22.3 -191.7 23 23 A L H 3< S+ 0 0 4 -4,-2.2 -1,-0.3 1,-0.2 -2,-0.2 0.616 93.6 67.3 -69.5 -11.1 -16.7 25.6 -193.3 24 24 A T H << S+ 0 0 108 -3,-1.0 -1,-0.2 -4,-0.6 -2,-0.2 0.786 116.1 24.5 -78.4 -25.4 -18.0 23.8 -196.5 25 25 A S H << S+ 0 0 101 -3,-1.1 2,-0.3 -4,-0.5 -2,-0.2 0.486 124.9 50.7-113.8 -9.1 -21.0 22.5 -194.6 26 26 A N < - 0 0 49 -4,-1.5 -1,-0.1 -5,-0.1 3,-0.1 -0.947 58.3-150.2-132.4 152.4 -21.3 25.1 -191.8 27 27 A D S S+ 0 0 116 -2,-0.3 54,-2.7 1,-0.1 2,-0.3 0.493 93.2 46.9 -93.8 -7.4 -21.4 28.9 -191.6 28 28 A E E - B 0 80A 70 52,-0.2 2,-0.4 -6,-0.2 52,-0.2 -0.995 65.5-172.4-134.3 140.6 -19.7 28.6 -188.2 29 29 A V E - B 0 79A 0 50,-2.7 50,-2.8 -2,-0.3 2,-0.6 -0.999 14.2-145.0-135.2 137.0 -16.8 26.6 -187.0 30 30 A I E -aB 4 78A 32 -27,-2.9 -25,-3.0 -2,-0.4 2,-0.5 -0.903 10.5-164.7-105.1 119.7 -15.5 26.1 -183.4 31 31 A I E -aB 5 77A 0 46,-2.8 46,-2.9 -2,-0.6 2,-0.4 -0.885 12.5-177.7-102.4 124.1 -11.7 25.9 -182.9 32 32 A K E +aB 6 76A 81 -27,-2.2 -25,-3.4 -2,-0.5 2,-0.3 -0.951 7.6 161.2-124.1 143.4 -10.7 24.5 -179.5 33 33 A A E -aB 7 75A 6 42,-2.0 42,-2.3 -2,-0.4 2,-0.3 -0.984 19.6-148.4-157.1 158.2 -7.2 24.0 -178.1 34 34 A R E > - B 0 74A 123 -27,-0.5 3,-2.0 -2,-0.3 40,-0.3 -0.922 56.0 -22.9-130.2 155.9 -5.5 23.5 -174.7 35 35 A G G > S+ 0 0 30 38,-3.0 3,-1.7 -2,-0.3 4,-0.3 -0.146 129.0 0.5 50.1-131.3 -2.1 24.4 -173.3 36 36 A K G > S+ 0 0 175 1,-0.3 3,-0.6 2,-0.2 4,-0.4 0.663 124.9 69.4 -64.5 -16.8 0.7 25.0 -175.8 37 37 A A G <> S+ 0 0 18 -3,-2.0 4,-2.3 1,-0.2 3,-0.3 0.626 77.5 84.3 -77.9 -9.7 -1.7 24.3 -178.7 38 38 A I H <> S+ 0 0 39 -3,-1.7 4,-1.9 1,-0.2 -1,-0.2 0.902 87.7 50.7 -58.3 -40.9 -3.5 27.6 -177.9 39 39 A N H <> S+ 0 0 92 -3,-0.6 4,-1.9 -4,-0.3 -1,-0.2 0.834 109.4 50.9 -69.3 -28.0 -0.9 29.5 -180.0 40 40 A K H > S+ 0 0 37 -4,-0.4 4,-2.7 -3,-0.3 -1,-0.2 0.847 106.0 56.2 -74.4 -34.7 -1.4 27.1 -182.9 41 41 A A H X S+ 0 0 0 -4,-2.3 4,-2.4 1,-0.2 -2,-0.2 0.914 109.3 46.1 -63.3 -40.1 -5.2 27.6 -182.6 42 42 A V H X S+ 0 0 60 -4,-1.9 4,-2.9 2,-0.2 5,-0.2 0.923 110.7 52.9 -68.6 -41.5 -4.7 31.4 -183.0 43 43 A D H X S+ 0 0 77 -4,-1.9 4,-2.2 1,-0.2 -2,-0.2 0.915 110.5 48.7 -56.4 -44.4 -2.3 30.8 -185.9 44 44 A V H X S+ 0 0 0 -4,-2.7 4,-2.2 2,-0.2 -2,-0.2 0.952 112.7 45.8 -62.8 -48.5 -5.0 28.7 -187.6 45 45 A A H X S+ 0 0 5 -4,-2.4 4,-2.1 1,-0.2 -2,-0.2 0.892 113.4 50.3 -63.2 -38.9 -7.8 31.2 -187.1 46 46 A E H X S+ 0 0 62 -4,-2.9 4,-3.2 1,-0.2 5,-0.2 0.881 108.5 52.5 -67.8 -36.4 -5.5 34.0 -188.3 47 47 A M H X>S+ 0 0 23 -4,-2.2 4,-3.2 -5,-0.2 5,-0.8 0.937 108.9 48.8 -63.8 -44.8 -4.5 32.1 -191.4 48 48 A I H X>S+ 0 0 0 -4,-2.2 5,-3.0 1,-0.2 4,-1.5 0.950 117.4 42.8 -58.0 -48.2 -8.2 31.5 -192.4 49 49 A R H <5S+ 0 0 100 -4,-2.1 -2,-0.2 -5,-0.2 -1,-0.2 0.871 120.9 40.1 -65.4 -41.8 -8.9 35.2 -191.8 50 50 A N H <5S+ 0 0 83 -4,-3.2 -2,-0.2 -5,-0.2 -3,-0.2 0.881 132.6 12.8 -79.4 -39.0 -5.8 36.5 -193.5 51 51 A R H <5S+ 0 0 159 -4,-3.2 -3,-0.2 -5,-0.2 -2,-0.2 0.636 126.9 29.0-118.3 -16.3 -5.5 34.1 -196.5 52 52 A F T < < + 0 0 25 -5,-3.0 3,-2.5 -6,-0.1 -1,-0.1 -0.700 64.4 177.2-128.6 75.9 -11.9 33.5 -196.2 54 54 A K T 3 S+ 0 0 166 -2,-0.3 -1,-0.1 1,-0.3 -5,-0.1 0.707 79.0 57.8 -53.6 -24.5 -11.0 37.2 -195.7 55 55 A D T 3 S+ 0 0 93 -3,-0.1 -1,-0.3 2,-0.1 -6,-0.1 0.521 79.3 125.4 -85.0 -6.5 -14.6 38.1 -194.9 56 56 A I < - 0 0 8 -3,-2.5 2,-0.3 -8,-0.2 25,-0.2 -0.217 49.1-149.8 -54.5 139.4 -14.6 35.6 -192.0 57 57 A K E -C 80 0A 114 23,-3.3 23,-3.0 0, 0.0 2,-1.0 -0.862 15.1-126.2-114.8 149.8 -15.7 37.1 -188.7 58 58 A I E -C 79 0A 50 -2,-0.3 21,-0.2 21,-0.2 3,-0.1 -0.824 28.8-179.7 -95.4 100.1 -14.6 36.1 -185.2 59 59 A K E - 0 0 125 19,-1.5 2,-0.3 -2,-1.0 -1,-0.2 0.790 62.1 -5.5 -71.7 -31.2 -18.0 35.6 -183.5 60 60 A K E -C 78 0A 88 18,-1.2 18,-3.4 2,-0.0 2,-0.4 -0.974 49.4-167.0-165.9 148.2 -16.6 34.6 -180.1 61 61 A I E +C 77 0A 98 -2,-0.3 2,-0.4 16,-0.2 16,-0.2 -0.987 17.2 175.4-138.8 128.6 -13.4 33.9 -178.2 62 62 A E E -C 76 0A 108 14,-2.4 14,-2.0 -2,-0.4 2,-0.3 -0.998 11.0-162.5-137.9 137.7 -13.4 32.3 -174.8 63 63 A I E +C 75 0A 131 -2,-0.4 2,-0.3 12,-0.2 12,-0.2 -0.868 22.9 141.6-116.7 157.4 -10.6 31.1 -172.5 64 64 A G E -C 74 0A 32 10,-2.0 10,-2.5 -2,-0.3 2,-0.4 -0.868 42.7 -90.4-165.1-164.0 -10.8 28.8 -169.5 65 65 A T E -C 73 0A 78 8,-0.3 8,-0.2 -2,-0.3 2,-0.2 -0.999 31.1-173.6-134.2 133.6 -9.1 26.0 -167.6 66 66 A D E C 72 0A 67 6,-3.5 6,-1.7 -2,-0.4 8,-0.0 -0.545 360.0 360.0-114.1-177.8 -9.4 22.1 -168.0 67 67 A K 0 0 171 4,-0.2 -1,-0.1 -2,-0.2 3,-0.1 0.201 360.0 360.0-144.1 360.0 -8.2 19.1 -166.1 68 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 69 75 A E 0 0 153 0, 0.0 2,-0.4 0, 0.0 -2,-0.0 0.000 360.0 360.0 360.0 17.0 -4.7 16.7 -161.0 70 76 A V - 0 0 111 -3,-0.1 2,-0.2 2,-0.0 -4,-0.0 -0.973 360.0-129.7-130.4 141.7 -3.4 19.5 -163.1 71 77 A N - 0 0 112 -2,-0.4 2,-0.4 -6,-0.0 -4,-0.2 -0.576 23.2-173.9 -84.4 146.5 -4.9 22.6 -164.6 72 78 A V E - C 0 66A 38 -6,-1.7 -6,-3.5 -2,-0.2 2,-0.1 -0.993 23.7-119.4-143.1 133.1 -4.5 23.4 -168.3 73 79 A S E - C 0 65A 69 -2,-0.4 -38,-3.0 -8,-0.2 2,-0.3 -0.426 30.1-165.4 -71.5 148.4 -5.6 26.6 -170.1 74 80 A T E -BC 34 64A 22 -10,-2.5 -10,-2.0 -40,-0.3 2,-0.3 -0.922 10.0-165.9-133.1 156.0 -8.1 26.4 -172.9 75 81 A I E -BC 33 63A 18 -42,-2.3 -42,-2.0 -2,-0.3 2,-0.4 -0.982 2.3-166.6-139.6 148.1 -9.2 28.6 -175.7 76 82 A E E -BC 32 62A 45 -14,-2.0 -14,-2.4 -2,-0.3 2,-0.5 -0.982 7.2-170.9-137.3 123.3 -12.3 28.3 -178.0 77 83 A I E -BC 31 61A 6 -46,-2.9 -46,-2.8 -2,-0.4 2,-0.6 -0.976 8.1-155.7-120.0 121.0 -12.4 30.5 -181.1 78 84 A V E -BC 30 60A 4 -18,-3.4 -19,-1.5 -2,-0.5 -18,-1.2 -0.866 7.4-165.3-102.3 118.7 -15.7 30.7 -183.1 79 85 A L E -BC 29 58A 0 -50,-2.8 -50,-2.7 -2,-0.6 2,-0.4 -0.852 9.4-176.7-100.0 138.3 -15.3 31.7 -186.7 80 86 A A E BC 28 57A 14 -23,-3.0 -23,-3.3 -2,-0.4 -52,-0.2 -0.992 360.0 360.0-137.3 143.5 -18.4 32.7 -188.6 81 87 A K 0 0 108 -54,-2.7 -25,-0.1 -2,-0.4 -54,-0.1 -0.426 360.0 360.0 -81.2 360.0 -19.1 33.6 -192.2