==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 29-DEC-02 1NIX . COMPND 2 MOLECULE: HAINANTOXIN-I; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HAINANA; . AUTHOR D.LI,S.LIANG . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2856.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 36.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 233 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 56.2 -6.9 8.8 -5.5 2 2 A a - 0 0 58 16,-0.0 2,-0.4 7,-0.0 14,-0.2 -0.798 360.0 -86.7-135.7 178.9 -5.1 5.8 -3.9 3 3 A K B -a 16 0A 64 12,-0.8 14,-3.0 -2,-0.2 17,-0.2 -0.764 32.1-170.3 -93.2 131.7 -1.6 4.1 -4.0 4 4 A G - 0 0 30 -2,-0.4 2,-0.3 1,-0.2 -1,-0.2 0.929 59.3 -35.8 -83.2 -81.2 -0.9 1.6 -6.8 5 5 A F S S+ 0 0 134 1,-0.1 -1,-0.2 25,-0.1 25,-0.2 -0.965 122.2 14.1-150.5 130.7 2.4 -0.2 -6.0 6 6 A G S S+ 0 0 33 23,-2.3 2,-0.4 -2,-0.3 -1,-0.1 0.870 89.3 131.3 76.5 35.5 5.7 1.0 -4.5 7 7 A K - 0 0 108 22,-0.2 22,-1.4 -3,-0.1 -1,-0.2 -0.976 66.3-106.7-125.4 128.6 4.1 4.2 -3.2 8 8 A S B +B 28 0B 83 -2,-0.4 20,-0.3 20,-0.3 2,-0.3 -0.228 56.3 154.6 -50.7 127.2 4.5 5.5 0.4 9 9 A b - 0 0 18 18,-1.7 14,-0.0 14,-0.1 -1,-0.0 -0.882 45.0-101.5-146.6 178.2 1.1 5.0 2.3 10 10 A V > > - 0 0 95 -2,-0.3 5,-0.7 12,-0.0 3,-0.5 -0.924 29.2-143.0-114.3 115.7 -0.3 4.5 5.8 11 11 A P T 3 5S+ 0 0 60 0, 0.0 12,-0.1 0, 0.0 10,-0.0 -0.520 76.9 54.5 -74.4 135.5 -1.2 0.9 6.9 12 12 A G T 3 5S+ 0 0 68 -2,-0.2 0, 0.0 10,-0.1 0, 0.0 -0.372 106.0 43.7 139.3 -58.6 -4.3 0.7 9.1 13 13 A K T < 5S- 0 0 175 -3,-0.5 0, 0.0 0, 0.0 0, 0.0 0.409 105.4-119.1 -97.1 2.9 -7.2 2.4 7.1 14 14 A N T 5 + 0 0 114 -4,-0.3 6,-0.0 1,-0.1 7,-0.0 0.996 45.3 169.9 58.7 69.5 -6.2 0.8 3.8 15 15 A E < + 0 0 80 -5,-0.7 -12,-0.8 -13,-0.1 -1,-0.1 0.640 45.5 100.3 -85.7 -13.3 -5.4 3.9 1.7 16 16 A c B S-a 3 0A 12 -14,-0.2 -12,-0.2 -6,-0.2 3,-0.1 -0.138 88.1 -83.8 -65.3 168.6 -3.9 1.9 -1.1 17 17 A a > - 0 0 26 -14,-3.0 3,-1.3 1,-0.2 2,-0.2 -0.208 64.4 -70.6 -68.6 166.1 -6.0 1.1 -4.3 18 18 A S T 3 S+ 0 0 123 1,-0.2 -1,-0.2 -3,-0.1 3,-0.1 -0.392 125.8 22.4 -60.4 122.1 -8.4 -1.8 -4.3 19 19 A G T 3 S+ 0 0 60 1,-0.3 13,-1.1 -2,-0.2 2,-0.3 -0.167 109.0 83.8 112.5 -40.1 -6.3 -5.0 -4.4 20 20 A Y E < -C 31 0C 102 -3,-1.3 -1,-0.3 11,-0.2 2,-0.3 -0.702 58.9-165.9 -97.1 149.9 -3.1 -3.5 -2.9 21 21 A A E -C 30 0C 21 9,-2.8 9,-2.4 -2,-0.3 2,-0.2 -0.958 26.0-104.2-133.7 152.8 -2.5 -3.1 0.9 22 22 A b E -C 29 0C 21 -2,-0.3 7,-0.2 7,-0.2 2,-0.2 -0.520 37.4-157.0 -75.6 139.9 0.1 -1.1 2.9 23 23 A N - 0 0 24 5,-1.7 -14,-0.1 -2,-0.2 -1,-0.0 -0.517 21.0-130.3-108.7 179.4 2.9 -3.2 4.5 24 24 A S S S+ 0 0 104 -2,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.457 96.1 64.7-109.6 -2.9 5.2 -2.5 7.5 25 25 A R S S+ 0 0 233 3,-0.1 -1,-0.0 1,-0.1 0, 0.0 0.942 124.0 9.2 -85.1 -53.4 8.6 -3.3 5.8 26 26 A D S S- 0 0 88 2,-0.1 3,-0.1 0, 0.0 -2,-0.1 0.431 93.2-130.6-105.5 -0.7 8.8 -0.5 3.3 27 27 A K S S+ 0 0 145 1,-0.2 -18,-1.7 -19,-0.1 2,-0.2 0.899 73.3 100.4 53.8 41.3 5.7 1.5 4.6 28 28 A W B S-B 8 0B 72 -20,-0.3 -5,-1.7 -7,-0.1 2,-0.4 -0.718 84.2 -57.8-139.3-170.1 4.3 1.7 1.0 29 29 A c E +C 22 0C 0 -22,-1.4 -23,-2.3 -2,-0.2 2,-0.4 -0.613 55.4 172.0 -79.1 129.8 1.7 0.0 -1.3 30 30 A K E -C 21 0C 94 -9,-2.4 -9,-2.8 -2,-0.4 -25,-0.1 -0.997 33.9-114.0-140.1 135.0 2.2 -3.7 -1.7 31 31 A V E -C 20 0C 54 -2,-0.4 -11,-0.2 -11,-0.2 -26,-0.0 -0.330 22.5-131.0 -65.2 146.8 0.0 -6.4 -3.4 32 32 A L 0 0 143 -13,-1.1 -1,-0.1 -2,-0.0 -12,-0.1 0.965 360.0 360.0 -65.1 -51.8 -1.5 -9.0 -1.0 33 33 A L 0 0 181 -3,-0.0 -2,-0.0 0, 0.0 0, 0.0 -0.626 360.0 360.0 -90.3 360.0 -0.5 -12.1 -3.1