==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 30-DEC-02 1NIY . COMPND 2 MOLECULE: HAINANTOXIN-IV; . SOURCE 2 ORGANISM_SCIENTIFIC: ORNITHOCTONUS HAINANA; . AUTHOR D.LI,S.LU,X.GU,S.LIANG . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2960.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 45.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 141 0, 0.0 2,-0.1 0, 0.0 15,-0.0 0.000 360.0 360.0 360.0 131.0 6.1 8.5 1.1 2 2 A a - 0 0 85 15,-0.1 2,-0.3 16,-0.1 14,-0.2 -0.574 360.0-175.2-161.1 91.9 6.5 5.1 2.9 3 3 A L B -a 16 0A 43 12,-1.3 14,-1.4 -2,-0.1 3,-0.1 -0.661 30.0-114.2 -90.5 146.3 3.7 3.5 4.9 4 4 A G > - 0 0 43 -2,-0.3 3,-0.8 1,-0.1 27,-0.3 -0.154 49.1 -73.3 -69.7 171.5 4.3 0.3 6.8 5 5 A F T 3 S+ 0 0 132 1,-0.2 27,-0.2 25,-0.1 -1,-0.1 -0.495 121.6 18.9 -69.6 128.9 2.5 -3.0 5.8 6 6 A G T 3 S+ 0 0 31 25,-2.2 2,-0.4 -2,-0.3 -1,-0.2 0.860 90.7 144.6 81.6 36.3 -1.2 -2.9 6.8 7 7 A K < - 0 0 117 -3,-0.8 24,-1.2 24,-0.1 -1,-0.3 -0.898 59.5-105.0-110.9 136.2 -1.4 0.9 7.1 8 8 A G B +B 30 0B 68 -2,-0.4 22,-0.3 22,-0.2 2,-0.3 -0.367 60.7 150.2 -57.8 117.7 -4.5 2.9 6.1 9 9 A b - 0 0 11 20,-2.0 16,-0.0 -2,-0.2 -1,-0.0 -0.890 48.7 -96.1-143.2 174.3 -3.6 4.6 2.8 10 10 A N > - 0 0 60 -2,-0.3 4,-2.9 1,-0.1 5,-0.3 -0.852 17.8-156.8-100.3 126.9 -5.2 5.9 -0.5 11 11 A P T 4 S+ 0 0 36 0, 0.0 -1,-0.1 0, 0.0 13,-0.1 0.781 93.6 57.4 -70.5 -27.0 -5.1 3.5 -3.5 12 12 A S T 4 S+ 0 0 106 1,-0.1 14,-0.0 14,-0.1 -2,-0.0 0.938 122.1 23.9 -71.0 -44.7 -5.5 6.5 -5.9 13 13 A N T 4 S- 0 0 120 2,-0.0 -1,-0.1 0, 0.0 11,-0.0 0.836 96.7-151.1 -88.3 -35.1 -2.4 8.3 -4.6 14 14 A D < + 0 0 55 -4,-2.9 17,-0.0 1,-0.1 9,-0.0 0.918 21.9 178.0 62.9 99.0 -0.6 5.2 -3.3 15 15 A Q + 0 0 86 -5,-0.3 -12,-1.3 2,-0.1 -1,-0.1 0.168 35.9 124.0-116.6 18.3 1.7 6.1 -0.3 16 16 A c B S-a 3 0A 4 -14,-0.2 2,-0.5 -6,-0.2 -12,-0.1 -0.308 72.4 -94.5 -74.4 163.5 3.0 2.6 0.6 17 17 A a > - 0 0 19 -14,-1.4 5,-1.8 1,-0.2 3,-0.3 -0.664 26.2-159.5 -82.2 125.7 6.7 1.9 0.7 18 18 A K T > 5S+ 0 0 180 -2,-0.5 3,-1.8 1,-0.2 -1,-0.2 0.845 89.0 64.5 -72.7 -31.8 8.0 0.4 -2.6 19 19 A S T 3 5S+ 0 0 112 1,-0.3 -1,-0.2 2,-0.1 -2,-0.0 0.859 105.9 44.2 -60.9 -32.8 11.2 -1.0 -0.9 20 20 A S T 3 5S- 0 0 63 -3,-0.3 -1,-0.3 2,-0.1 -2,-0.2 0.186 117.3-112.9 -96.9 19.0 8.9 -3.4 1.2 21 21 A N T < 5 + 0 0 92 -3,-1.8 13,-0.8 1,-0.2 2,-0.4 0.954 62.2 158.2 51.5 54.4 6.8 -4.3 -1.8 22 22 A L E < -C 33 0C 9 -5,-1.8 2,-0.4 11,-0.2 11,-0.2 -0.918 18.8-178.1-113.1 133.9 3.7 -2.5 -0.4 23 23 A V E -C 32 0C 59 9,-2.1 9,-2.7 -2,-0.4 2,-0.5 -0.981 33.0-111.2-130.3 140.9 0.7 -1.4 -2.6 24 24 A b E -C 31 0C 12 -2,-0.4 7,-0.2 7,-0.2 2,-0.1 -0.555 36.0-144.9 -72.3 120.3 -2.4 0.5 -1.5 25 25 A S - 0 0 10 5,-2.9 -16,-0.1 -2,-0.5 -11,-0.1 -0.448 8.0-146.2 -82.2 159.1 -5.4 -1.9 -1.9 26 26 A R S S+ 0 0 207 3,-0.2 -1,-0.1 2,-0.1 -14,-0.1 0.858 98.8 39.8 -92.5 -41.1 -8.9 -0.6 -3.0 27 27 A K S S+ 0 0 187 1,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.904 131.1 29.4 -74.9 -40.6 -11.0 -3.1 -0.9 28 28 A H S S- 0 0 97 2,-0.1 -1,-0.2 -20,-0.0 -2,-0.1 0.698 92.0-148.4 -91.4 -20.4 -8.8 -2.9 2.2 29 29 A R + 0 0 165 1,-0.2 -20,-2.0 -21,-0.1 2,-0.3 0.911 63.3 94.5 54.6 42.6 -7.6 0.7 1.5 30 30 A W B S-B 8 0B 87 -22,-0.3 -5,-2.9 -7,-0.2 2,-0.6 -0.897 88.6 -69.6-149.6 179.1 -4.2 -0.1 3.1 31 31 A c E -C 24 0C 0 -24,-1.2 -25,-2.2 -27,-0.3 2,-0.3 -0.650 53.7-175.9 -79.7 120.0 -0.6 -1.2 2.2 32 32 A K E -C 23 0C 75 -9,-2.7 -9,-2.1 -2,-0.6 2,-0.5 -0.870 22.5-128.8-117.0 151.7 -0.7 -4.9 1.1 33 33 A Y E -C 22 0C 109 -2,-0.3 2,-0.7 -11,-0.2 -11,-0.2 -0.850 19.0-135.2-101.1 126.0 2.2 -7.2 0.2 34 34 A E 0 0 137 -13,-0.8 -2,-0.0 -2,-0.5 -12,-0.0 -0.669 360.0 360.0 -81.3 115.7 2.0 -9.1 -3.1 35 35 A I 0 0 202 -2,-0.7 -1,-0.2 0, 0.0 -2,-0.0 0.681 360.0 360.0-116.0 360.0 3.0 -12.7 -2.6