==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 02-JAN-03 1NJQ . COMPND 2 MOLECULE: SUPERMAN PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR C.ISERNIA,E.BUCCI,M.LEONE,L.ZACCARO,P.DI LELLO,G.DIGILIO, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3996.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A W 0 0 190 0, 0.0 5,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 145.4 6.4 -2.0 -4.7 2 2 A P - 0 0 105 0, 0.0 2,-0.0 0, 0.0 0, 0.0 -0.298 360.0-104.9 -66.8 156.0 9.6 -4.3 -4.6 3 3 A P S S+ 0 0 107 0, 0.0 13,-0.0 0, 0.0 3,-0.0 -0.152 83.4 82.9 -67.2-170.9 9.3 -7.9 -3.3 4 4 A R S S- 0 0 233 12,-0.1 12,-0.0 -2,-0.0 2,-0.0 0.961 111.6 -30.6 61.0 83.8 10.5 -9.2 0.1 5 5 A S S S- 0 0 67 11,-0.2 2,-0.4 9,-0.1 11,-0.3 0.070 77.7-105.1 55.5 162.5 7.5 -8.2 2.3 6 6 A Y E -A 15 0A 75 9,-0.7 9,-2.9 11,-0.0 2,-0.4 -0.988 28.1-168.7-118.8 143.9 5.3 -5.1 1.7 7 7 A T E -A 14 0A 63 -2,-0.4 2,-0.4 7,-0.2 7,-0.2 -0.979 26.3-117.5-127.8 139.3 5.2 -1.8 3.4 8 8 A C > - 0 0 8 5,-1.5 4,-1.0 -2,-0.4 -2,-0.0 -0.640 13.9-147.1 -76.9 128.9 2.6 1.0 3.2 9 9 A S T 4 S+ 0 0 88 -2,-0.4 -1,-0.1 2,-0.1 -2,-0.0 0.021 94.6 48.1 -82.7 23.7 4.2 4.2 1.8 10 10 A F T 4 S+ 0 0 113 3,-0.1 -1,-0.1 0, 0.0 -2,-0.0 0.616 128.8 11.5-122.8 -54.6 1.7 6.3 4.0 11 11 A C T 4 S- 0 0 62 2,-0.0 -2,-0.1 0, 0.0 -3,-0.0 0.313 96.8-119.6-113.0 3.6 1.8 4.9 7.6 12 12 A K < + 0 0 143 -4,-1.0 -3,-0.1 1,-0.2 2,-0.0 0.682 51.4 170.2 56.6 28.1 4.9 2.6 7.1 13 13 A R - 0 0 144 1,-0.1 -5,-1.5 -6,-0.1 2,-0.4 -0.253 26.6-130.9 -62.7 154.4 3.0 -0.6 8.0 14 14 A E E +A 7 0A 161 -7,-0.2 -7,-0.2 -9,-0.0 2,-0.2 -0.889 37.1 144.8-117.7 130.5 4.5 -4.1 7.5 15 15 A F E -A 6 0A 16 -9,-2.9 -9,-0.7 -2,-0.4 6,-0.1 -0.741 27.4-174.9-165.6 109.0 2.9 -7.1 5.7 16 16 A R S S+ 0 0 225 -11,-0.3 2,-0.5 -2,-0.2 -11,-0.2 0.803 74.8 85.9 -64.0 -26.9 4.4 -9.9 3.5 17 17 A S S >> S- 0 0 50 1,-0.1 4,-2.2 -11,-0.1 3,-0.6 -0.648 70.5-149.3 -89.5 124.2 0.8 -11.1 3.0 18 18 A A H 3> S+ 0 0 74 -2,-0.5 4,-2.9 1,-0.2 5,-0.3 0.831 97.1 67.5 -53.9 -34.0 -1.3 -9.6 0.2 19 19 A Q H 3> S+ 0 0 179 2,-0.2 4,-1.4 1,-0.2 -1,-0.2 0.931 109.1 35.4 -53.0 -49.1 -4.4 -10.3 2.4 20 20 A A H <> S+ 0 0 43 -3,-0.6 4,-2.2 2,-0.2 -2,-0.2 0.963 117.5 53.8 -72.5 -44.8 -3.2 -7.6 4.8 21 21 A L H X S+ 0 0 24 -4,-2.2 4,-1.6 2,-0.2 3,-0.2 0.907 109.9 44.9 -54.5 -58.1 -1.7 -5.3 2.1 22 22 A G H >X S+ 0 0 50 -4,-2.9 4,-1.2 1,-0.2 3,-0.7 0.936 117.5 43.7 -56.4 -53.5 -4.9 -5.0 -0.1 23 23 A G H 3X S+ 0 0 47 -4,-1.4 4,-1.2 -5,-0.3 -1,-0.2 0.814 108.6 60.6 -59.7 -29.8 -7.2 -4.4 2.9 24 24 A H H 3< S+ 0 0 16 -4,-2.2 4,-0.4 1,-0.2 -1,-0.2 0.829 100.6 51.8 -73.0 -41.5 -4.8 -2.0 4.5 25 25 A M H XX S+ 0 0 61 -4,-1.6 4,-1.8 -3,-0.7 3,-1.1 0.843 101.9 63.4 -61.7 -32.4 -4.8 0.5 1.5 26 26 A N H 3< S+ 0 0 122 -4,-1.2 -2,-0.2 1,-0.3 -1,-0.2 0.907 97.2 55.2 -58.3 -43.8 -8.7 0.4 1.8 27 27 A V T 3< S+ 0 0 112 -4,-1.2 -1,-0.3 1,-0.1 -2,-0.2 0.610 115.3 41.2 -64.1 -23.4 -8.4 2.0 5.3 28 28 A H T <4 + 0 0 39 -3,-1.1 -2,-0.2 -4,-0.4 -3,-0.1 0.829 65.7 146.3 -81.5 -79.8 -6.4 4.8 3.8 29 29 A R < + 0 0 152 -4,-1.8 2,-0.6 1,-0.2 -3,-0.1 0.640 29.9 149.3 45.3 32.2 -8.1 5.6 0.4 30 30 A R - 0 0 190 2,-0.0 -1,-0.2 3,-0.0 -3,-0.0 -0.768 54.8 -42.5-105.4 117.5 -7.2 9.3 0.7 31 31 A D S S+ 0 0 135 -2,-0.6 2,-2.9 1,-0.1 -2,-0.0 0.111 110.4 59.0 55.7 179.8 -6.6 11.4 -2.4 32 32 A R > - 0 0 183 1,-0.2 3,-1.5 2,-0.1 -1,-0.1 -0.222 69.5-163.4 66.4 -51.4 -4.6 10.4 -5.6 33 33 A A T 3 S- 0 0 70 -2,-2.9 2,-1.6 1,-0.3 -1,-0.2 0.874 74.4 -31.9 29.9 87.2 -6.9 7.4 -6.4 34 34 A R T > S- 0 0 192 1,-0.1 2,-2.7 3,-0.1 3,-1.1 -0.165 79.5-156.7 71.3 -38.5 -4.8 5.3 -8.8 35 35 A L T < S- 0 0 114 -2,-1.6 -1,-0.1 -3,-1.5 -2,-0.1 -0.284 77.3 -25.7 66.7 -47.2 -3.3 8.7 -10.1 36 36 A R T 3 0 0 184 -2,-2.7 -1,-0.3 1,-0.2 -2,-0.0 0.286 360.0 360.0-157.8 -44.7 -2.4 7.1 -13.5 37 37 A L < 0 0 159 -3,-1.1 -1,-0.2 0, 0.0 -3,-0.1 -0.961 360.0 360.0-156.5 360.0 -2.0 3.3 -12.7