==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 20-OCT-06 2NLS . COMPND 2 MOLECULE: BETA-DEFENSIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.LUBKOWSKI,M.PAZGIER . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2909.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D > 0 0 110 0, 0.0 4,-2.4 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0-178.7 2.9 1.9 19.2 2 2 A H H > + 0 0 64 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.918 360.0 47.9 -55.6 -52.1 0.5 4.7 20.2 3 3 A Y H > S+ 0 0 172 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.888 113.2 47.6 -65.1 -36.2 -2.7 2.8 19.5 4 4 A N H > S+ 0 0 95 2,-0.2 4,-1.7 1,-0.2 6,-0.3 0.884 111.4 52.4 -67.5 -37.7 -1.6 -0.3 21.4 5 5 A a H X>S+ 0 0 1 -4,-2.4 5,-2.1 21,-0.2 4,-0.6 0.949 110.9 47.0 -60.2 -50.0 -0.5 2.0 24.3 6 6 A V H ><5S+ 0 0 94 -4,-2.8 3,-1.3 1,-0.2 -2,-0.2 0.958 115.6 44.1 -53.2 -55.6 -3.9 3.7 24.5 7 7 A S H 3<5S+ 0 0 94 -4,-2.2 -1,-0.2 1,-0.3 -2,-0.2 0.732 112.2 52.4 -71.3 -21.5 -5.9 0.4 24.3 8 8 A S H 3<5S- 0 0 43 -4,-1.7 -1,-0.3 -3,-0.2 -2,-0.2 0.395 116.6-106.1 -91.6 -3.3 -3.6 -1.4 26.9 9 9 A G T <<5S+ 0 0 53 -3,-1.3 -3,-0.2 -4,-0.6 2,-0.1 0.610 76.1 129.3 86.5 15.4 -3.9 1.3 29.6 10 10 A G < - 0 0 19 -5,-2.1 2,-0.4 -6,-0.3 -1,-0.3 -0.429 52.7-127.4 -93.1 174.6 -0.4 2.7 29.2 11 11 A Q E -A 35 0A 116 24,-2.3 24,-2.8 -2,-0.1 2,-0.5 -0.984 15.7-131.0-121.6 131.6 0.8 6.2 28.8 12 12 A b E +A 34 0A 25 -2,-0.4 2,-0.4 22,-0.2 22,-0.2 -0.720 36.2 175.1 -81.9 124.6 3.2 7.4 26.0 13 13 A L E -A 33 0A 27 20,-2.8 20,-2.9 -2,-0.5 14,-0.1 -0.993 37.5-165.2-136.0 131.7 6.0 9.4 27.5 14 14 A Y S S+ 0 0 155 -2,-0.4 -1,-0.1 18,-0.3 3,-0.1 0.870 87.6 67.0 -74.5 -34.2 9.2 11.0 26.0 15 15 A S S S- 0 0 77 1,-0.2 18,-0.4 -3,-0.1 -2,-0.1 -0.075 107.8 -70.9 -74.9 177.4 10.3 11.3 29.7 16 16 A A - 0 0 65 1,-0.1 -1,-0.2 16,-0.1 -2,-0.1 -0.324 50.9 -96.6 -77.6 153.4 11.1 8.2 31.7 17 17 A c - 0 0 23 -3,-0.1 -1,-0.1 -4,-0.1 6,-0.1 -0.466 51.9-101.3 -59.2 132.8 8.5 5.8 33.0 18 18 A P > - 0 0 70 0, 0.0 3,-2.5 0, 0.0 -1,-0.1 -0.176 44.0 -97.5 -55.0 152.7 7.6 6.8 36.6 19 19 A I T 3 S+ 0 0 159 1,-0.3 -2,-0.1 -3,-0.1 0, 0.0 0.759 119.6 43.6 -49.4 -43.4 9.5 4.5 39.1 20 20 A F T 3 S+ 0 0 204 2,-0.0 -1,-0.3 16,-0.0 2,-0.2 0.491 104.8 82.2 -80.7 -4.5 6.8 2.0 40.0 21 21 A T < - 0 0 43 -3,-2.5 2,-0.3 -4,-0.0 -4,-0.1 -0.580 65.8-145.4-103.9 166.9 5.8 1.6 36.3 22 22 A K - 0 0 151 -2,-0.2 14,-2.1 12,-0.0 2,-0.3 -0.943 24.4 -96.6-134.0 153.9 7.4 -0.4 33.5 23 23 A I E +B 35 0A 105 -2,-0.3 12,-0.2 12,-0.2 3,-0.1 -0.526 35.0 173.1 -68.7 130.5 8.0 -0.2 29.8 24 24 A Q E - 0 0 96 10,-3.3 2,-0.3 1,-0.4 11,-0.1 0.352 64.8 -52.8-112.7 -6.0 5.3 -2.1 27.8 25 25 A G E -B 34 0A 30 9,-0.6 9,-2.7 2,-0.0 -1,-0.4 -0.953 66.4 -82.4 153.5-167.8 6.4 -1.0 24.3 26 26 A T E -B 33 0A 62 7,-0.3 2,-0.3 -2,-0.3 7,-0.3 -0.800 27.7-147.7-128.6 170.6 7.1 2.3 22.6 27 27 A b E >> +B 32 0A 0 5,-2.3 5,-2.3 -2,-0.3 4,-0.6 -0.970 66.2 27.8-132.3 156.7 5.1 5.1 20.9 28 28 A Y T >45S- 0 0 103 -2,-0.3 3,-0.8 1,-0.2 -1,-0.1 0.930 132.3 -40.1 65.1 52.2 5.7 7.5 18.0 29 29 A R T 345S- 0 0 246 1,-0.2 -1,-0.2 -3,-0.1 -2,-0.0 0.849 112.6 -56.1 65.4 38.3 8.1 5.6 15.8 30 30 A G T 345S+ 0 0 49 2,-0.1 -1,-0.2 1,-0.1 -2,-0.2 0.491 115.3 107.6 84.4 2.2 10.2 4.2 18.7 31 31 A E T <<5S+ 0 0 148 -3,-0.8 2,-0.3 -4,-0.6 -3,-0.2 0.710 74.3 42.6 -89.8 -24.9 11.0 7.6 20.2 32 32 A A E