==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN 23-OCT-06 2NMQ . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G PRECURSOR; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR M.BLACKLEDGE,G.BOUVIGNIES,R.BRUESCHWEILER,P.MARKWICK . 53 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3649.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 71.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 9.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 20.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 24.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 8 A Y 0 0 76 0, 0.0 15,-1.3 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 153.3 -5.5 -19.0 -2.9 2 9 A K E -Ab 15 49A 48 46,-2.3 48,-4.5 13,-0.2 2,-0.5 -0.919 360.0-162.3-120.5 144.8 -5.8 -16.1 -0.5 3 10 A L E -Ab 14 50A 38 11,-2.1 11,-1.8 -2,-0.4 2,-0.5 -0.986 3.7-164.1-127.5 124.9 -5.2 -12.4 -1.0 4 11 A V E -Ab 13 51A 52 46,-2.5 48,-3.2 -2,-0.5 2,-0.6 -0.927 7.6-155.0-110.2 127.9 -4.7 -10.0 1.9 5 12 A I E -Ab 12 52A 47 7,-2.5 7,-1.7 -2,-0.5 2,-0.8 -0.895 12.0-177.7-107.4 115.0 -5.1 -6.2 1.1 6 13 A N E +A 11 0A 65 46,-3.8 5,-0.2 -2,-0.6 2,-0.1 -0.715 25.6 159.5-110.9 79.7 -3.2 -3.9 3.5 7 14 A G - 0 0 44 3,-2.2 30,-0.1 -2,-0.8 32,-0.0 -0.430 53.1-115.4 -97.4 173.5 -4.2 -0.5 2.1 8 15 A K S S+ 0 0 119 -2,-0.1 -1,-0.1 1,-0.1 3,-0.1 0.886 116.5 12.0 -73.9 -38.9 -4.2 3.0 3.6 9 16 A T S S+ 0 0 110 1,-0.2 2,-0.5 -3,-0.0 -1,-0.1 0.647 127.3 56.9-110.6 -23.0 -8.0 3.3 3.4 10 17 A L + 0 0 62 2,-0.0 -3,-2.2 25,-0.0 2,-0.4 -0.946 54.6 172.7-119.0 125.6 -9.0 -0.3 2.6 11 18 A K E +A 6 0A 95 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -0.993 30.5 94.9-129.3 134.1 -8.2 -3.4 4.7 12 19 A G E -A 5 0A 46 -7,-1.7 -7,-2.5 -2,-0.4 2,-0.3 -0.994 52.9-105.6 173.3-170.5 -9.6 -6.8 4.0 13 20 A E E +A 4 0A 91 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.993 23.0 176.6-146.6 152.0 -9.3 -10.3 2.4 14 21 A T E -A 3 0A 70 -11,-1.8 -11,-2.1 -2,-0.3 2,-0.3 -0.928 14.8-142.1-147.6 168.5 -10.8 -12.1 -0.5 15 22 A T E -A 2 0A 89 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.932 12.7-177.1-136.3 160.0 -10.3 -15.5 -2.2 16 23 A T - 0 0 59 -15,-1.3 2,-0.5 -2,-0.3 8,-0.1 -0.993 22.0-129.3-155.2 152.3 -10.3 -16.9 -5.7 17 24 A K + 0 0 105 -2,-0.3 2,-0.3 7,-0.1 3,-0.0 -0.900 36.6 157.1-108.4 132.6 -10.0 -20.3 -7.4 18 25 A A - 0 0 60 -2,-0.5 3,-0.1 1,-0.1 -2,-0.0 -0.989 46.8-126.3-151.2 156.1 -7.5 -20.8 -10.2 19 26 A V S S+ 0 0 116 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.719 93.5 10.0 -77.1 -21.4 -5.6 -23.7 -11.9 20 27 A D S > S- 0 0 58 1,-0.1 4,-1.2 -3,-0.0 -1,-0.1 -0.952 77.7-107.4-150.3 166.8 -2.1 -22.1 -11.4 21 28 A A H > S+ 0 0 86 -2,-0.3 4,-1.9 1,-0.2 5,-0.2 0.871 114.0 59.1 -67.1 -37.2 -0.6 -19.2 -9.5 22 29 A E H > S+ 0 0 80 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.926 103.1 51.0 -58.4 -46.8 -0.0 -17.1 -12.7 23 30 A T H > S+ 0 0 58 2,-0.2 4,-1.4 3,-0.1 -1,-0.2 0.888 112.3 48.9 -59.4 -38.8 -3.7 -17.1 -13.5 24 31 A A H >X S+ 0 0 19 -4,-1.2 3,-3.4 2,-0.2 4,-1.4 0.984 102.9 57.1 -62.7 -79.4 -4.5 -15.9 -10.0 25 32 A E H 3X S+ 0 0 66 -4,-1.9 4,-2.5 1,-0.3 -1,-0.2 0.719 108.3 51.1 -17.2 -50.2 -2.0 -13.0 -9.9 26 33 A K H 3X S+ 0 0 62 -4,-1.7 4,-1.7 -5,-0.2 -1,-0.3 0.899 109.6 48.3 -62.7 -41.4 -3.7 -11.7 -13.0 27 34 A A H S+ 0 0 36 -4,-3.0 5,-2.7 1,-0.2 3,-0.4 0.903 111.0 50.3 -54.7 -42.9 -6.9 -4.3 -6.9 33 40 A N H ><5S+ 0 0 69 -4,-1.8 3,-2.1 -5,-0.3 -1,-0.2 0.933 105.7 54.0 -62.6 -46.9 -7.2 -1.9 -9.8 34 41 A D H 3<5S+ 0 0 95 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.742 111.2 48.8 -60.5 -21.2 -11.0 -1.8 -9.8 35 42 A N T 3<5S- 0 0 78 -4,-1.2 -1,-0.3 -3,-0.4 -2,-0.2 0.295 115.6-114.2-101.7 9.2 -10.7 -0.9 -6.1 36 43 A G T < 5 + 0 0 74 -3,-2.1 2,-0.5 1,-0.2 -3,-0.2 0.800 68.3 141.0 64.2 30.2 -8.2 1.9 -6.6 37 44 A V < + 0 0 52 -5,-2.7 2,-0.4 -6,-0.2 -1,-0.2 -0.891 23.9 175.6-109.3 132.4 -5.4 0.1 -4.7 38 45 A D + 0 0 110 -2,-0.5 2,-0.2 14,-0.0 14,-0.0 -0.976 24.3 93.3-139.6 125.5 -1.8 0.2 -5.8 39 46 A G - 0 0 69 -2,-0.4 2,-0.5 -32,-0.0 -32,-0.0 -0.774 65.2 -28.3-167.8-146.3 1.3 -1.3 -4.1 40 47 A V - 0 0 69 13,-2.2 13,-2.2 -2,-0.2 2,-0.4 -0.833 48.6-147.3-101.2 132.7 3.8 -4.1 -3.5 41 48 A W E +C 52 0A 98 -2,-0.5 2,-0.3 11,-0.2 11,-0.2 -0.819 16.8 178.8-103.0 136.4 2.8 -7.7 -4.0 42 49 A T E -C 51 0A 59 9,-2.7 9,-3.4 -2,-0.4 2,-0.3 -0.959 4.7-169.5-132.1 150.1 4.1 -10.7 -2.1 43 50 A Y E -C 50 0A 86 -2,-0.3 2,-0.6 7,-0.3 7,-0.2 -0.985 11.5-157.9-146.2 133.0 3.2 -14.4 -2.3 44 51 A D E >> -C 49 0A 52 5,-2.4 5,-1.5 -2,-0.3 4,-1.0 -0.935 4.1-161.9-112.4 117.6 4.0 -17.4 -0.2 45 52 A D T 45S+ 0 0 103 -2,-0.6 -1,-0.1 1,-0.2 5,-0.0 0.794 88.7 63.2 -66.6 -27.7 3.7 -20.8 -2.0 46 53 A A T 45S+ 0 0 110 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.878 118.4 24.2 -65.4 -38.3 3.5 -22.6 1.3 47 54 A T T 45S- 0 0 71 -3,-0.4 -1,-0.2 2,-0.1 -2,-0.2 0.393 100.4-127.3-107.4 0.8 0.2 -21.0 2.2 48 55 A K T <5 + 0 0 56 -4,-1.0 -46,-2.3 1,-0.2 2,-0.4 0.886 62.6 141.9 54.4 39.3 -0.9 -20.1 -1.3 49 56 A T E < -bC 2 44A 35 -5,-1.5 -5,-2.4 -48,-0.2 2,-0.4 -0.936 39.7-160.9-120.1 135.2 -1.4 -16.5 -0.1 50 57 A F E -bC 3 43A 43 -48,-4.5 -46,-2.5 -2,-0.4 2,-0.4 -0.872 10.6-160.8-109.3 142.3 -0.8 -13.2 -1.9 51 58 A T E -bC 4 42A 45 -9,-3.4 -9,-2.7 -2,-0.4 2,-0.5 -0.975 5.8-164.4-126.1 137.6 -0.5 -10.0 0.0 52 59 A V E bC 5 41A 46 -48,-3.2 -46,-3.8 -2,-0.4 -11,-0.2 -0.978 360.0 360.0-123.3 119.0 -0.8 -6.5 -1.4 53 60 A T 0 0 84 -13,-2.2 -13,-2.2 -2,-0.5 -46,-0.2 -0.953 360.0 360.0-118.9 360.0 0.5 -3.7 0.8