==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELL SURFACE PROTEIN 08-MAY-97 1NRE . COMPND 2 MOLECULE: RECEPTOR-ASSOCIATED PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR P.R.NIELSEN,F.M.POULSEN . 81 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6085.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 57 70.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 49 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 17 A G 0 0 83 0, 0.0 2,-0.5 0, 0.0 13,-0.1 0.000 360.0 360.0 360.0 64.9 5.5 15.1 4.4 2 18 A E + 0 0 132 1,-0.1 8,-0.1 11,-0.0 5,-0.0 -0.917 360.0 179.9-112.6 125.0 2.6 12.8 3.5 3 19 A E + 0 0 100 -2,-0.5 2,-0.3 3,-0.1 -1,-0.1 0.432 68.9 61.4 -98.9 -0.6 1.7 12.0 -0.2 4 20 A F S S- 0 0 10 2,-0.1 30,-0.1 1,-0.1 6,-0.0 -0.842 78.1-128.6-123.5 162.1 -1.3 9.8 0.7 5 21 A R S S+ 0 0 175 -2,-0.3 2,-0.4 1,-0.0 -1,-0.1 0.690 92.7 64.0 -82.4 -17.9 -4.6 10.4 2.6 6 22 A M S >> S- 0 0 18 1,-0.1 4,-2.2 -3,-0.0 3,-0.8 -0.899 79.2-134.7-111.9 136.6 -4.1 7.4 4.9 7 23 A E H 3> S+ 0 0 136 -2,-0.4 4,-3.7 1,-0.2 5,-0.4 0.868 105.4 64.4 -53.4 -36.0 -1.2 7.1 7.5 8 24 A K H 3> S+ 0 0 92 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.929 107.7 40.2 -57.1 -42.6 -0.7 3.5 6.3 9 25 A L H <> S+ 0 0 0 -3,-0.8 4,-3.6 2,-0.2 5,-0.3 0.943 119.0 45.8 -72.9 -45.0 0.4 4.7 2.8 10 26 A N H X S+ 0 0 12 -4,-2.2 4,-3.6 2,-0.2 5,-0.4 0.976 115.7 46.2 -61.7 -51.0 2.4 7.7 4.2 11 27 A Q H X S+ 0 0 105 -4,-3.7 4,-2.8 -5,-0.2 5,-0.2 0.942 116.3 46.4 -57.1 -44.9 4.1 5.5 6.8 12 28 A L H X S+ 0 0 18 -4,-2.2 4,-3.0 -5,-0.4 -2,-0.2 0.975 117.5 42.6 -61.7 -52.2 4.7 2.9 4.1 13 29 A W H X S+ 0 0 21 -4,-3.6 4,-2.3 2,-0.2 -2,-0.2 0.980 117.9 44.4 -58.6 -57.2 6.0 5.5 1.6 14 30 A E H X S+ 0 0 79 -4,-3.6 4,-2.7 -5,-0.3 -1,-0.2 0.909 113.5 52.4 -56.9 -39.4 8.1 7.4 4.3 15 31 A K H X S+ 0 0 70 -4,-2.8 4,-2.4 -5,-0.4 5,-0.2 0.964 104.9 55.0 -62.8 -45.4 9.4 4.0 5.6 16 32 A A H <>S+ 0 0 0 -4,-3.0 5,-1.4 1,-0.2 3,-0.2 0.947 108.9 48.2 -50.9 -46.5 10.4 3.0 2.0 17 33 A Q H ><5S+ 0 0 89 -4,-2.3 3,-2.4 1,-0.2 -1,-0.2 0.953 107.9 55.2 -58.4 -46.5 12.4 6.3 2.0 18 34 A R H 3<5S+ 0 0 205 -4,-2.7 -1,-0.2 1,-0.3 -2,-0.2 0.864 100.3 59.8 -55.4 -35.5 13.8 5.3 5.5 19 35 A L T 3<5S- 0 0 78 -4,-2.4 -1,-0.3 -3,-0.2 -2,-0.2 0.472 115.7-118.2 -73.5 1.5 15.0 2.0 3.9 20 36 A H T < 5 - 0 0 170 -3,-2.4 -3,-0.2 -5,-0.2 -2,-0.1 0.881 46.8-177.2 64.9 37.7 17.2 4.1 1.5 21 37 A L < - 0 0 18 -5,-1.4 -1,-0.1 -4,-0.1 51,-0.0 -0.338 29.5-105.4 -65.2 152.1 15.3 2.7 -1.6 22 38 A P > - 0 0 45 0, 0.0 4,-2.5 0, 0.0 5,-0.2 -0.288 33.0-103.3 -72.4 163.1 16.5 3.9 -5.0 23 39 A P H > S+ 0 0 110 0, 0.0 4,-2.6 0, 0.0 5,-0.2 0.836 121.5 55.9 -59.6 -30.8 14.5 6.6 -6.9 24 40 A V H > S+ 0 0 86 2,-0.2 4,-3.4 1,-0.2 5,-0.3 0.964 110.2 42.6 -68.0 -48.1 13.1 3.8 -9.2 25 41 A R H > S+ 0 0 101 1,-0.2 4,-3.1 2,-0.2 -1,-0.2 0.903 116.4 49.5 -65.8 -36.0 11.7 1.7 -6.3 26 42 A L H X S+ 0 0 28 -4,-2.5 4,-3.2 2,-0.2 -1,-0.2 0.924 113.7 46.0 -68.9 -39.3 10.4 4.8 -4.7 27 43 A A H X S+ 0 0 60 -4,-2.6 4,-2.4 -5,-0.2 -2,-0.2 0.986 117.5 42.2 -66.0 -53.3 8.8 5.9 -8.0 28 44 A E H X S+ 0 0 82 -4,-3.4 4,-2.6 1,-0.2 5,-0.2 0.948 115.8 52.0 -56.5 -46.0 7.3 2.4 -8.6 29 45 A L H X S+ 0 0 0 -4,-3.1 4,-3.5 -5,-0.3 5,-0.3 0.958 106.6 51.8 -56.6 -51.7 6.4 2.3 -4.9 30 46 A H H X S+ 0 0 46 -4,-3.2 4,-3.2 1,-0.2 5,-0.2 0.940 109.5 51.0 -53.1 -45.6 4.6 5.6 -5.1 31 47 A A H X S+ 0 0 48 -4,-2.4 4,-3.2 1,-0.2 5,-0.3 0.958 113.6 43.7 -57.2 -49.3 2.6 4.3 -8.1 32 48 A D H X S+ 0 0 38 -4,-2.6 4,-3.1 1,-0.2 -2,-0.2 0.901 115.2 49.3 -64.9 -36.9 1.6 1.1 -6.1 33 49 A L H X S+ 0 0 0 -4,-3.5 4,-2.6 -5,-0.2 -2,-0.2 0.888 112.5 48.5 -70.3 -34.4 0.9 3.3 -3.0 34 50 A K H X S+ 0 0 67 -4,-3.2 4,-3.2 -5,-0.3 5,-0.3 0.976 114.8 43.5 -69.0 -50.6 -1.2 5.6 -5.2 35 51 A I H X S+ 0 0 69 -4,-3.2 4,-3.0 -5,-0.2 5,-0.3 0.956 117.2 47.4 -58.1 -46.0 -3.1 2.7 -6.8 36 52 A Q H X S+ 0 0 1 -4,-3.1 4,-2.8 -5,-0.3 -1,-0.2 0.911 112.4 51.3 -62.4 -37.9 -3.4 1.1 -3.3 37 53 A E H X S+ 0 0 10 -4,-2.6 4,-2.9 -5,-0.2 5,-0.3 0.990 113.6 41.5 -62.9 -58.3 -4.5 4.5 -1.9 38 54 A R H X S+ 0 0 160 -4,-3.2 4,-3.1 1,-0.2 5,-0.4 0.950 118.3 47.4 -55.3 -48.7 -7.3 5.0 -4.6 39 55 A D H X S+ 0 0 35 -4,-3.0 4,-3.2 -5,-0.3 5,-0.3 0.912 112.0 51.3 -60.6 -39.9 -8.3 1.4 -4.3 40 56 A E H X S+ 0 0 17 -4,-2.8 4,-2.6 -5,-0.3 -2,-0.2 0.926 115.4 39.9 -66.9 -40.7 -8.3 1.6 -0.5 41 57 A L H X S+ 0 0 46 -4,-2.9 4,-2.4 2,-0.2 -2,-0.2 0.976 120.1 45.3 -71.7 -49.9 -10.5 4.8 -0.4 42 58 A A H X S+ 0 0 52 -4,-3.1 4,-1.8 -5,-0.3 -2,-0.2 0.951 118.4 43.7 -56.1 -47.4 -12.8 3.5 -3.2 43 59 A W H X S+ 0 0 15 -4,-3.2 4,-3.4 -5,-0.4 5,-0.4 0.918 105.7 61.0 -66.7 -39.7 -12.9 0.1 -1.5 44 60 A K H X S+ 0 0 73 -4,-2.6 4,-3.4 -5,-0.3 5,-0.3 0.950 103.7 51.9 -54.5 -38.7 -13.4 1.7 1.9 45 61 A K H X S+ 0 0 140 -4,-2.4 4,-3.1 2,-0.2 5,-0.3 0.967 110.6 48.5 -59.0 -46.2 -16.6 3.0 0.3 46 62 A L H X>S+ 0 0 34 -4,-1.8 5,-3.2 2,-0.2 4,-2.2 0.969 114.8 43.3 -55.6 -56.3 -17.3 -0.6 -0.7 47 63 A K H <5S+ 0 0 116 -4,-3.4 -1,-0.2 3,-0.2 -2,-0.2 0.898 117.1 47.2 -59.2 -40.4 -16.6 -1.9 2.9 48 64 A L H <5S+ 0 0 137 -4,-3.4 -1,-0.2 -5,-0.4 -2,-0.2 0.890 114.9 45.6 -71.1 -37.0 -18.6 1.0 4.4 49 65 A D H <5S- 0 0 116 -4,-3.1 -2,-0.2 -5,-0.3 -1,-0.2 0.781 124.0-101.8 -76.8 -25.3 -21.5 0.6 2.0 50 66 A G T <5S+ 0 0 30 -4,-2.2 3,-0.2 -5,-0.3 -3,-0.2 0.761 85.5 121.2 107.9 39.0 -21.6 -3.3 2.5 51 67 A L S + 0 0 13 -6,-0.3 3,-0.6 -9,-0.2 -1,-0.2 -0.328 63.0 139.2-101.8 54.2 -16.9 -6.4 0.8 53 69 A E T 3 S+ 0 0 159 -2,-0.5 -1,-0.2 -3,-0.2 -2,-0.0 0.549 79.6 42.2 -72.9 -3.6 -18.8 -8.4 3.4 54 70 A D T 3 S- 0 0 154 -3,-0.2 -1,-0.2 0, 0.0 -2,-0.1 0.481 115.0-106.8-120.2 -6.0 -16.6 -11.4 2.5 55 71 A G S < S+ 0 0 34 -3,-0.6 -2,-0.1 4,-0.0 -3,-0.1 0.861 83.0 120.7 82.8 36.3 -13.0 -9.8 2.1 56 72 A E S > S+ 0 0 147 2,-0.1 4,-0.9 -5,-0.1 -4,-0.1 0.858 75.9 38.7 -98.0 -48.2 -13.0 -10.1 -1.7 57 73 A K H >> S+ 0 0 101 1,-0.2 4,-0.9 2,-0.2 3,-0.6 0.927 120.1 47.6 -69.9 -39.9 -12.5 -6.4 -2.8 58 74 A E H 3> S+ 0 0 64 1,-0.2 4,-3.6 2,-0.2 5,-0.3 0.819 97.4 73.7 -69.4 -26.0 -10.1 -5.8 0.2 59 75 A A H 3> S+ 0 0 39 1,-0.3 4,-3.3 2,-0.2 5,-0.3 0.925 94.1 52.3 -53.5 -41.1 -8.3 -9.0 -0.9 60 76 A R H X>S+ 0 0 1 -4,-2.9 4,-2.7 2,-0.2 3,-0.8 0.989 115.7 47.7 -63.2 -55.7 4.3 -3.7 -2.5 69 85 A L H 3X5S+ 0 0 27 -4,-3.6 4,-1.9 1,-0.3 -1,-0.2 0.835 113.3 51.1 -55.3 -28.2 5.7 -5.1 0.8 70 86 A A H 3<5S+ 0 0 85 -4,-2.0 -1,-0.3 -5,-0.4 -2,-0.2 0.820 111.7 46.0 -79.5 -28.6 7.2 -7.9 -1.4 71 87 A K H <<5S+ 0 0 84 -4,-1.9 -2,-0.2 -3,-0.8 -1,-0.2 0.797 132.9 18.6 -81.7 -30.2 8.7 -5.4 -3.8 72 88 A Y H <5S- 0 0 14 -4,-2.7 -3,-0.2 -5,-0.2 -2,-0.2 0.575 92.1-131.6-115.5 -16.3 10.2 -3.2 -1.1 73 89 A G << + 0 0 22 -4,-1.9 3,-0.2 -5,-0.6 -3,-0.2 0.950 54.5 148.0 63.7 44.2 10.2 -5.5 2.0 74 90 A L S S+ 0 0 9 -5,-0.2 -5,-0.1 1,-0.2 -4,-0.1 0.963 75.1 6.7 -78.1 -54.8 8.6 -2.7 4.0 75 91 A D S S+ 0 0 96 -9,-0.1 -1,-0.2 2,-0.0 2,-0.1 -0.286 127.6 43.8-124.7 50.7 6.4 -4.7 6.5 76 92 A G S S+ 0 0 56 1,-0.3 2,-0.2 -7,-0.2 -6,-0.1 -0.284 103.1 3.6-151.3-120.0 7.4 -8.3 5.9 77 93 A K + 0 0 139 -2,-0.1 -1,-0.3 -8,-0.1 -2,-0.0 -0.562 50.0 164.4 -81.7 145.3 10.7 -10.2 5.4 78 94 A K + 0 0 183 -2,-0.2 -1,-0.1 -3,-0.1 -5,-0.0 -0.020 53.1 74.5-151.5 37.8 13.9 -8.2 5.7 79 95 A D S S- 0 0 160 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.687 109.7 -50.4-116.4 -75.2 16.8 -10.7 6.1 80 96 A A 0 0 94 0, 0.0 -3,-0.0 0, 0.0 0, 0.0 0.557 360.0 360.0-135.8 -52.8 17.8 -12.6 2.9 81 97 A R 0 0 250 0, 0.0 -4,-0.1 0, 0.0 0, 0.0 0.458 360.0 360.0-154.4 360.0 14.9 -14.3 1.1