==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 25-JAN-03 1NRM . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BREVIBACILLUS BREVIS; . AUTHOR L.E.TOWNSLEY,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2602.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30100.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 65 0, 0.0 20,-2.3 0, 0.0 2,-0.8 0.000 360.0 360.0 360.0 151.5 -3.4 -1.0 1.3 2 2 A G E +aB 8 20A 20 5,-2.4 7,-2.6 18,-0.2 2,-0.3 -0.750 360.0 2.9 106.0 -92.4 -3.5 -1.9 -2.5 3 3 A A E S+aB 9 19A 38 16,-2.1 16,-2.1 -2,-0.8 2,-0.2 -0.935 114.2 28.2-145.6 114.4 -0.2 -2.5 -4.3 4 4 A X E S-aB 10 18A 62 5,-2.9 7,-2.1 -2,-0.3 2,-0.3 -0.767 116.9 -15.0 141.1 -86.2 3.3 -2.5 -2.8 5 5 A A E S+a 11 0A 10 12,-2.3 2,-0.5 -2,-0.2 7,-0.2 -0.972 103.4 39.9-138.0 159.2 3.1 -3.6 0.9 6 6 A X E S+a 12 0A 42 5,-1.6 7,-2.6 -2,-0.3 2,-0.7 -0.943 109.1 0.6 118.0-122.6 0.3 -3.9 3.5 7 7 A V E S+a 13 0A 64 -2,-0.5 -5,-2.4 5,-0.2 2,-0.3 -0.898 121.9 22.8-106.3 100.6 -3.3 -5.3 2.7 8 8 A X E S+a 2 0A 55 5,-2.9 7,-2.6 -2,-0.7 2,-0.3 -0.974 106.2 3.5 146.4-134.9 -3.3 -6.2 -1.1 9 9 A W E S+a 3 0A 142 -7,-2.6 -5,-2.9 -2,-0.3 2,-0.6 -0.708 106.4 12.0 -96.5 142.6 -0.5 -7.1 -3.6 10 10 A X E S+a 4 0A 68 5,-1.8 -5,-0.2 -2,-0.3 2,-0.2 -0.896 109.9 16.7 107.1-105.0 3.3 -7.5 -2.9 11 11 A W E S+a 5 0A 151 -7,-2.1 -5,-1.6 -2,-0.6 2,-1.0 -0.667 108.2 14.5-107.9 158.5 4.3 -7.6 0.8 12 12 A X E S-a 6 0A 111 -2,-0.2 2,-0.3 -7,-0.2 -5,-0.2 -0.738 113.5 -1.3 88.0 -94.2 2.6 -8.2 4.2 13 13 A W E S+a 7 0A 160 -7,-2.6 -5,-2.9 -2,-1.0 2,-0.5 -0.995 105.2 24.9-139.9 138.3 -0.9 -9.8 3.4 14 14 A X E a 8 0A 109 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.890 360.0 360.0 124.2 -96.6 -3.1 -10.8 0.4 15 15 A W 0 0 202 -7,-2.6 -5,-1.8 -2,-0.5 -7,-0.1 -0.808 360.0 360.0-135.5 360.0 -1.3 -11.6 -2.9 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 66 0, 0.0 -12,-2.3 0, 0.0 2,-0.8 0.000 360.0 360.0 360.0 151.5 3.5 1.0 1.2 18 2 B G E +Bc 4 24A 20 5,-2.4 7,-2.6 -14,-0.2 2,-0.3 -0.750 360.0 2.9 106.0 -92.3 3.5 1.9 -2.5 19 3 B A E S+Bc 3 25A 39 -16,-2.1 -16,-2.1 -2,-0.8 2,-0.2 -0.935 114.2 28.2-145.7 114.4 0.1 2.6 -4.3 20 4 B X E S-Bc 2 26A 61 5,-2.9 7,-2.1 -2,-0.3 2,-0.3 -0.766 116.9 -15.0 141.1 -86.2 -3.4 2.6 -2.6 21 5 B A E S+ c 0 27A 10 -20,-2.3 2,-0.5 -2,-0.2 7,-0.2 -0.972 103.4 39.9-138.0 159.2 -3.1 3.6 1.1 22 6 B X E S+ c 0 28A 41 5,-1.6 7,-2.6 -2,-0.3 2,-0.7 -0.944 109.1 0.6 118.0-122.6 -0.1 3.9 3.6 23 7 B V E S+ c 0 29A 66 -2,-0.5 -5,-2.4 5,-0.2 2,-0.3 -0.898 121.9 22.8-106.3 100.6 3.3 5.3 2.7 24 8 B X E S+cc 18 30A 57 5,-2.9 7,-2.6 -2,-0.7 2,-0.3 -0.974 106.2 3.4 146.4-134.9 3.3 6.3 -1.1 25 9 B W E S+c 19 0A 143 -7,-2.6 -5,-2.9 -2,-0.3 2,-0.6 -0.708 106.4 12.0 -96.4 142.5 0.4 7.2 -3.5 26 10 B X E S+c 20 0A 68 5,-1.8 -5,-0.2 -2,-0.3 2,-0.2 -0.895 109.9 16.7 107.2-105.0 -3.4 7.5 -2.7 27 11 B W E S+c 21 0A 151 -7,-2.1 -5,-1.6 -2,-0.6 2,-1.0 -0.666 108.2 14.5-108.0 158.4 -4.3 7.6 1.0 28 12 B X E S-c 22 0A 112 -2,-0.2 2,-0.3 -7,-0.2 -5,-0.2 -0.737 113.5 -1.3 88.1 -94.2 -2.4 8.2 4.4 29 13 B W E S+c 23 0A 158 -7,-2.6 -5,-2.9 -2,-1.0 2,-0.5 -0.995 105.2 24.9-139.9 138.3 1.0 9.7 3.6 30 14 B X E c 24 0A 109 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.891 360.0 360.0 124.2 -96.6 3.1 10.8 0.5 31 15 B W 0 0 202 -7,-2.6 -5,-1.8 -2,-0.5 -7,-0.1 -0.808 360.0 360.0-135.4 360.0 1.2 11.7 -2.8