==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 28-JAN-03 1NT5 . COMPND 2 MOLECULE: GRAMICIDIN A; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.E.TOWNSLEY,T.G.FLETCHER,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2520.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 32106.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 96 0, 0.0 20,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 142.5 3.3 -1.7 1.4 2 2 A G E +aB 8 20A 4 5,-2.2 7,-1.3 18,-0.2 2,-0.6 -0.762 360.0 0.8 102.0-145.3 0.1 -1.7 3.5 3 3 A A E S+aB 9 19A 35 16,-2.6 16,-2.6 -2,-0.3 2,-0.3 -0.780 117.3 32.6 -92.1 116.0 -3.7 -1.7 2.4 4 4 A X E S-aB 10 18A 67 5,-2.9 7,-1.4 -2,-0.6 2,-0.3 -0.824 118.2 -21.5 144.1 -96.3 -4.3 -1.9 -1.4 5 5 A A E S+a 11 0A 15 12,-2.5 2,-0.4 -2,-0.3 7,-0.2 -0.997 100.6 46.5-143.4 147.6 -1.5 -3.8 -3.2 6 6 A X E S-a 12 0A 44 5,-1.9 7,-2.7 -2,-0.3 2,-0.6 -0.995 108.9 -8.5 136.3-124.4 2.1 -4.8 -2.5 7 7 A V E S+a 13 0A 48 -2,-0.4 -5,-2.2 5,-0.2 2,-0.3 -0.957 121.2 31.9-106.3 110.0 3.2 -6.3 0.9 8 8 A X E S-a 2 0A 37 5,-2.8 7,-2.6 -2,-0.6 2,-0.3 -0.975 103.7 -2.1 144.2-135.7 0.2 -6.1 3.4 9 9 A W E S+a 3 0A 133 -7,-1.3 -5,-2.9 -2,-0.3 2,-0.8 -0.771 107.8 14.1-103.3 142.0 -3.6 -6.2 2.9 10 10 A X E S+a 4 0A 70 5,-1.6 2,-0.3 -2,-0.3 -5,-0.2 -0.779 113.0 13.8 109.1 -85.2 -5.6 -6.6 -0.4 11 11 A W E S+a 5 0A 154 -7,-1.4 -5,-1.9 -2,-0.8 2,-0.8 -0.851 105.9 20.7-131.8 160.5 -3.3 -7.7 -3.3 12 12 A X E S-a 6 0A 102 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.803 112.3 -14.1 86.5-105.0 0.2 -9.1 -3.9 13 13 A W E S+a 7 0A 154 -7,-2.7 -5,-2.8 -2,-0.8 2,-0.5 -0.944 106.0 40.8-132.9 152.6 1.4 -10.7 -0.6 14 14 A X E a 8 0A 100 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.883 360.0 360.0 120.7 -96.8 0.3 -10.7 3.1 15 15 A W 0 0 197 -7,-2.6 -5,-1.6 -2,-0.5 -7,-0.1 -0.839 360.0 360.0-147.8 360.0 -3.5 -10.8 3.8 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 102 0, 0.0 -12,-2.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 142.5 -0.0 0.9 -3.8 18 2 B G E +Bc 4 24A 4 5,-2.2 7,-1.3 -14,-0.2 2,-0.6 -0.762 360.0 0.8 101.9-145.2 -2.7 2.3 -1.5 19 3 B A E S+Bc 3 25A 37 -16,-2.6 -16,-2.6 -2,-0.3 2,-0.3 -0.780 117.3 32.6 -92.1 116.0 -2.6 3.2 2.3 20 4 B X E S-Bc 2 26A 65 5,-2.9 7,-1.4 -2,-0.6 2,-0.3 -0.824 118.2 -21.5 144.2 -96.3 0.9 2.7 4.0 21 5 B A E S+ c 0 27A 15 -20,-2.5 2,-0.4 -2,-0.3 7,-0.2 -0.997 100.6 46.5-143.4 147.6 3.8 3.3 1.5 22 6 B X E S- c 0 28A 45 5,-1.9 7,-2.7 -2,-0.3 2,-0.6 -0.995 108.9 -8.5 136.2-124.4 4.2 3.3 -2.3 23 7 B V E S+ c 0 29A 47 -2,-0.4 -5,-2.2 5,-0.2 2,-0.3 -0.957 121.2 31.9-106.3 110.0 1.7 5.1 -4.7 24 8 B X E S-cc 18 30A 38 5,-2.8 7,-2.6 -2,-0.6 2,-0.3 -0.975 103.8 -2.1 144.1-135.6 -1.3 6.3 -2.6 25 9 B W E S+c 19 0A 134 -7,-1.3 -5,-2.9 -2,-0.3 2,-0.8 -0.771 107.8 14.1-103.3 142.0 -1.6 7.5 1.1 26 10 B X E S+c 20 0A 72 5,-1.6 2,-0.3 -2,-0.3 -5,-0.2 -0.780 113.0 13.8 109.1 -85.2 1.0 7.7 3.9 27 11 B W E S+c 21 0A 150 -7,-1.4 -5,-1.9 -2,-0.8 2,-0.8 -0.851 105.9 20.7-131.9 160.6 4.6 7.4 2.3 28 12 B X E S-c 22 0A 106 -2,-0.3 2,-0.3 -7,-0.2 -5,-0.2 -0.803 112.3 -14.1 86.5-104.9 6.3 7.6 -1.1 29 13 B W E S+c 23 0A 153 -7,-2.7 -5,-2.8 -2,-0.8 2,-0.5 -0.943 106.0 40.8-132.9 152.7 4.0 9.4 -3.5 30 14 B X E c 24 0A 99 -2,-0.3 -5,-0.2 -7,-0.2 -2,-0.1 -0.883 360.0 360.0 120.7 -96.9 0.3 10.6 -3.6 31 15 B W 0 0 197 -7,-2.6 -5,-1.6 -2,-0.5 -7,-0.1 -0.838 360.0 360.0-147.7 360.0 -1.1 11.9 -0.3