==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=24-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 28-JAN-03 1NT6 . COMPND 2 MOLECULE: GRAMICIDIN C; . SOURCE 2 SYNTHETIC: YES; . AUTHOR L.E.TOWNSLEY,T.G.FLETCHER,J.F.HINTON . 30 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2653.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30100.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 16 53.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 100 0, 0.0 20,-2.2 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 141.1 -1.4 1.0 3.1 2 2 A G E +aB 8 20A 8 5,-2.5 7,-2.6 18,-0.2 2,-0.9 -0.623 360.0 6.6 91.9-144.2 2.1 2.3 2.3 3 3 A A E S+aB 9 19A 45 16,-2.5 16,-2.5 -2,-0.3 7,-0.2 -0.717 121.5 31.3 -88.7 101.4 3.9 2.9 -1.1 4 4 A X E S-aB 10 18A 68 5,-2.9 7,-1.8 -2,-0.9 2,-0.3 -0.639 117.0 -25.8 157.9 -87.3 1.4 2.3 -4.0 5 5 A A E S+a 11 0A 15 12,-2.2 2,-0.5 5,-0.2 7,-0.2 -0.976 97.6 50.3-149.1 164.4 -2.2 3.2 -3.1 6 6 A X E S-a 12 0A 54 5,-2.4 7,-2.5 -2,-0.3 2,-0.4 -0.965 109.4 -12.8 115.9-120.0 -4.5 3.5 -0.0 7 7 A V E S+a 13 0A 42 -2,-0.5 -5,-2.5 5,-0.2 2,-0.4 -0.977 119.8 33.8-112.8 129.9 -3.1 5.6 2.9 8 8 A X E S+a 2 0A 40 5,-2.3 7,-2.5 -2,-0.4 2,-0.4 -0.878 107.8 4.9 138.3-105.2 0.7 6.5 2.8 9 9 A W E S+a 3 0A 161 -7,-2.6 -5,-2.9 -2,-0.4 2,-0.6 -0.973 108.1 5.8-125.4 133.2 2.6 7.1 -0.5 10 10 A X E S+a 4 0A 83 5,-1.6 2,-0.5 -2,-0.4 -5,-0.2 -0.896 111.2 23.8 109.4-107.1 1.3 7.4 -4.1 11 11 A Y E S+a 5 0A 144 -7,-1.8 -5,-2.4 -2,-0.6 2,-0.4 -0.886 112.7 6.2-110.8 114.6 -2.5 7.2 -4.8 12 12 A X E S+a 6 0A 117 -2,-0.5 2,-0.2 -7,-0.2 -5,-0.2 -0.983 107.1 7.8 126.6-120.5 -5.1 8.2 -2.1 13 13 A W E S+a 7 0A 157 -7,-2.5 -5,-2.3 -2,-0.4 2,-0.8 -0.651 104.1 20.7-100.2 155.8 -4.2 9.7 1.4 14 14 A X E a 8 0A 108 -2,-0.2 -5,-0.2 -7,-0.2 -7,-0.1 -0.811 360.0 360.0 102.9 -95.2 -0.9 11.0 2.9 15 15 A W 0 0 186 -7,-2.5 -5,-1.6 -2,-0.8 -7,-0.1 -0.863 360.0 360.0-146.1 360.0 1.8 11.9 0.4 16 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 17 1 B X 0 0 98 0, 0.0 -12,-2.2 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 141.1 -2.1 -1.3 -2.5 18 2 B G E +Bc 4 24A 9 5,-2.5 7,-2.6 -14,-0.2 2,-0.9 -0.623 360.0 6.6 91.8-144.2 1.7 -1.9 -2.9 19 3 B A E S+Bc 3 25A 47 -16,-2.5 -16,-2.5 -2,-0.3 7,-0.2 -0.717 121.5 31.3 -88.6 101.5 4.5 -2.0 -0.4 20 4 B X E S-Bc 2 26A 68 5,-2.9 7,-1.9 -2,-0.9 2,-0.3 -0.638 117.0 -25.8 157.9 -87.3 3.1 -1.8 3.2 21 5 B A E S+ c 0 27A 14 -20,-2.2 2,-0.5 5,-0.2 7,-0.2 -0.976 97.6 50.3-149.1 164.3 -0.4 -3.5 3.5 22 6 B X E S- c 0 28A 54 5,-2.4 7,-2.5 -2,-0.3 2,-0.4 -0.965 109.4 -12.8 116.0-120.0 -3.5 -4.3 1.4 23 7 B V E S+ c 0 29A 44 -2,-0.5 -5,-2.5 5,-0.2 2,-0.4 -0.977 119.8 33.8-112.9 129.9 -2.7 -6.2 -1.9 24 8 B X E S+cc 18 30A 39 5,-2.3 7,-2.5 -2,-0.4 2,-0.4 -0.877 107.8 4.9 138.3-105.3 0.9 -6.3 -3.1 25 9 B W E S+c 19 0A 158 -7,-2.6 -5,-2.9 -2,-0.4 2,-0.6 -0.973 108.1 5.8-125.3 133.3 3.9 -6.5 -0.6 26 10 B X E S+c 20 0A 81 5,-1.6 2,-0.6 -2,-0.4 -5,-0.2 -0.896 111.2 23.9 109.3-107.2 3.9 -6.8 3.2 27 11 B Y E S+c 21 0A 144 -7,-1.9 -5,-2.4 -2,-0.6 2,-0.4 -0.886 112.7 6.1-110.7 114.6 0.6 -7.4 5.1 28 12 B X E S+c 22 0A 116 -2,-0.6 2,-0.2 -7,-0.2 -5,-0.2 -0.983 107.1 7.9 126.6-120.5 -2.5 -8.9 3.4 29 13 B W E S+c 23 0A 157 -7,-2.5 -5,-2.3 -2,-0.4 2,-0.8 -0.651 104.1 20.6-100.2 155.8 -2.5 -10.4 -0.2 30 14 B X E c 24 0A 109 -2,-0.2 -5,-0.2 -7,-0.2 -7,-0.1 -0.811 360.0 360.0 102.9 -95.2 0.3 -11.1 -2.8 31 15 B W 0 0 187 -7,-2.5 -5,-1.6 -2,-0.8 -7,-0.1 -0.863 360.0 360.0-146.2 360.0 3.8 -11.4 -1.3