==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 10-FEB-03 1NX7 . COMPND 2 MOLECULE: CYTOCHROME B5; . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR H.WU,Q.ZANG . 81 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5054.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 63 77.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 7 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 13.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 9.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 15 18.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 23.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 3 A A 0 0 144 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 176.4 2.0 16.4 -3.3 2 4 A V - 0 0 42 1,-0.1 2,-1.0 73,-0.1 73,-0.2 -0.352 360.0-127.4 -55.1 132.1 1.4 12.8 -4.3 3 5 A K E -a 75 0A 108 71,-1.7 73,-1.4 24,-0.1 2,-0.4 -0.771 22.3-137.5 -87.6 97.6 4.7 11.2 -5.4 4 6 A Y E +a 76 0A 133 -2,-1.0 2,-0.3 71,-0.2 73,-0.2 -0.506 33.0 173.7 -67.8 120.0 3.9 9.8 -8.8 5 7 A Y E -a 77 0A 31 71,-2.9 73,-1.4 -2,-0.4 2,-0.1 -0.961 25.1-134.2-129.9 134.9 5.5 6.3 -8.9 6 8 A T >> - 0 0 39 -2,-0.3 4,-1.3 71,-0.3 3,-0.8 -0.517 42.2 -93.8 -85.7 164.2 5.3 3.5 -11.6 7 9 A L H 3> S+ 0 0 68 1,-0.3 4,-2.9 2,-0.2 3,-0.4 0.898 130.2 62.2 -35.6 -51.2 4.7 -0.2 -10.6 8 10 A E H 3> S+ 0 0 85 2,-0.2 4,-2.4 1,-0.2 -1,-0.3 0.889 96.6 54.4 -35.6 -62.7 8.5 -0.2 -10.8 9 11 A E H <4 S+ 0 0 47 -3,-0.8 -1,-0.2 1,-0.3 -2,-0.2 0.890 115.9 39.1 -48.2 -47.7 8.9 2.3 -7.9 10 12 A I H >< S+ 0 0 0 -4,-1.3 3,-2.7 -3,-0.4 10,-0.3 0.902 110.5 59.4 -66.5 -39.8 6.7 0.1 -5.7 11 13 A Q H 3< S+ 0 0 121 -4,-2.9 -2,-0.2 1,-0.3 -3,-0.2 0.838 102.0 55.2 -64.3 -32.6 8.4 -3.1 -7.1 12 14 A K T 3< S+ 0 0 95 -4,-2.4 2,-0.5 -5,-0.2 -1,-0.3 0.418 98.1 69.5 -70.5 -6.0 11.7 -1.7 -5.8 13 15 A H < + 0 0 67 -3,-2.7 7,-2.4 -5,-0.2 36,-0.8 -0.740 66.3 103.0-126.4 81.7 10.1 -1.4 -2.2 14 16 A N B +E 19 0B 71 -2,-0.5 5,-0.2 5,-0.2 -1,-0.1 0.157 41.3 132.3-149.8 7.9 9.7 -4.9 -1.1 15 17 A N S S- 0 0 77 3,-0.9 33,-0.1 -3,-0.1 -2,-0.0 -0.063 77.4 -73.4 -79.7 180.0 12.4 -6.0 1.4 16 18 A S S S- 0 0 105 1,-0.2 29,-0.1 3,-0.0 -1,-0.1 0.773 132.7 -2.1 -38.2 -42.6 12.3 -7.8 4.8 17 19 A K S S+ 0 0 88 28,-0.1 2,-0.3 1,-0.0 -1,-0.2 0.679 110.0 96.5-110.8 -58.6 10.9 -4.5 6.2 18 20 A S + 0 0 41 1,-0.1 -3,-0.9 -4,-0.1 2,-0.5 -0.177 57.4 172.8 -40.5 94.7 10.9 -2.0 3.3 19 21 A T B +E 14 0B 0 -2,-0.3 12,-0.7 -5,-0.2 2,-0.3 -0.945 16.0 157.7-128.2 110.3 7.2 -2.4 2.2 20 22 A W + 0 0 28 -7,-2.4 29,-2.9 -2,-0.5 30,-0.5 -0.940 12.2 168.0-116.5 148.9 5.2 -0.4 -0.3 21 23 A L E -Bc 28 50A 3 7,-1.5 7,-2.9 -2,-0.3 2,-0.4 -0.923 30.1-111.1-150.1 173.2 2.0 -1.7 -2.1 22 24 A I E -Bc 27 51A 3 28,-2.0 31,-1.4 -2,-0.3 30,-1.0 -0.947 18.5-176.3-120.3 128.1 -0.8 -0.3 -4.3 23 25 A L E > S-B 26 0A 13 3,-2.7 3,-0.5 -2,-0.4 28,-0.0 -0.835 86.9 -26.0-122.5 87.2 -4.5 0.1 -3.4 24 26 A H T 3 S- 0 0 105 -2,-0.5 2,-1.1 1,-0.2 -1,-0.2 0.992 123.4 -49.8 63.5 69.6 -6.2 1.4 -6.6 25 27 A Y T 3 S+ 0 0 145 1,-0.1 52,-1.6 51,-0.1 2,-0.3 0.046 115.9 114.4 68.1 -27.2 -3.1 3.1 -8.2 26 28 A K E < -BD 23 76A 63 -2,-1.1 -3,-2.7 -3,-0.5 2,-0.5 -0.568 67.3-131.9 -78.3 132.1 -2.4 4.9 -4.8 27 29 A V E -BD 22 75A 0 48,-2.2 47,-2.3 -2,-0.3 48,-1.5 -0.813 15.3-153.3 -96.7 122.8 0.8 3.7 -3.2 28 30 A Y E -BD 21 73A 16 -7,-2.9 2,-1.7 -2,-0.5 -7,-1.5 -0.861 7.1-147.0-105.3 120.9 0.6 2.9 0.5 29 31 A D > + 0 0 28 43,-2.8 3,-1.0 -2,-0.5 4,-0.4 -0.292 33.4 159.6 -86.8 56.3 3.8 3.2 2.5 30 32 A L T 3> + 0 0 11 -2,-1.7 4,-2.2 1,-0.2 -10,-0.2 0.366 38.0 107.2 -73.8 13.8 3.2 0.4 4.9 31 33 A T T 34 S+ 0 0 37 -12,-0.7 -1,-0.2 1,-0.3 4,-0.2 0.839 93.1 33.8 -60.5 -37.9 6.9 0.0 5.9 32 34 A K T X> S+ 0 0 85 -3,-1.0 3,-0.9 -13,-0.1 4,-0.6 0.785 112.9 63.4 -75.5 -35.7 6.0 1.6 9.3 33 35 A F H >> S+ 0 0 23 -4,-0.4 4,-3.1 1,-0.2 3,-0.6 0.767 77.9 85.0 -74.6 -28.1 2.5 0.0 9.4 34 36 A L H 3< S+ 0 0 7 -4,-2.2 -1,-0.2 1,-0.2 -2,-0.1 0.829 98.8 38.1 -28.5 -55.6 3.8 -3.6 9.5 35 37 A E H <4 S+ 0 0 137 -3,-0.9 -1,-0.2 -4,-0.2 -2,-0.2 0.748 118.2 49.2 -80.7 -28.7 4.1 -3.4 13.3 36 38 A E H << S+ 0 0 110 -3,-0.6 -2,-0.2 -4,-0.6 -1,-0.2 0.857 88.2 100.4 -72.0 -44.0 0.9 -1.3 13.8 37 39 A H >< - 0 0 23 -4,-3.1 3,-2.4 1,-0.1 7,-0.1 -0.274 65.0-148.8 -57.4 120.8 -1.3 -3.5 11.6 38 40 A P T 3 S+ 0 0 136 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.811 103.4 59.5 -57.9 -27.2 -3.6 -6.0 13.6 39 41 A G T 3 S- 0 0 39 1,-0.2 4,-0.4 2,-0.0 5,-0.2 0.209 112.5-130.0 -83.6 13.6 -3.2 -8.2 10.5 40 42 A G < - 0 0 21 -3,-2.4 4,-0.3 -7,-0.1 -1,-0.2 0.038 17.5 -79.2 74.4-173.7 0.7 -8.2 11.1 41 43 A E S >> S+ 0 0 93 2,-0.1 4,-2.7 3,-0.1 3,-0.8 0.875 111.1 69.0 -92.9 -49.6 3.7 -7.5 8.9 42 44 A E H 3> S+ 0 0 88 1,-0.3 4,-3.1 2,-0.2 5,-0.2 0.862 100.6 47.9 -43.1 -56.5 4.1 -10.8 7.0 43 45 A V H 3> S+ 0 0 65 -4,-0.4 4,-2.0 1,-0.2 -1,-0.3 0.846 115.3 44.3 -53.1 -45.3 1.0 -10.4 4.8 44 46 A L H <4 S+ 0 0 17 -3,-0.8 4,-0.2 -4,-0.3 -1,-0.2 0.914 114.4 48.4 -74.2 -43.2 1.8 -6.8 3.9 45 47 A R H >< S+ 0 0 53 -4,-2.7 3,-1.0 2,-0.2 -2,-0.2 0.886 108.5 54.6 -63.6 -42.3 5.4 -7.5 3.1 46 48 A E H 3< S+ 0 0 140 -4,-3.1 -2,-0.2 -5,-0.3 -1,-0.2 0.922 111.6 45.3 -55.8 -45.2 4.3 -10.5 1.0 47 49 A Q T >< S+ 0 0 44 -4,-2.0 3,-0.8 -5,-0.2 -1,-0.3 0.519 91.6 125.3 -70.1 -8.9 2.1 -8.1 -0.9 48 50 A A T < + 0 0 17 -3,-1.0 -27,-0.2 1,-0.2 -34,-0.2 -0.177 65.8 26.6 -62.0 148.2 5.0 -5.6 -1.0 49 51 A G T 3 S+ 0 0 18 -29,-2.9 2,-0.3 -36,-0.8 -1,-0.2 0.787 115.1 70.7 63.8 31.6 6.1 -4.4 -4.5 50 52 A G E < S-c 21 0A 17 -3,-0.8 -28,-2.0 -30,-0.5 2,-0.8 -0.991 93.8 -78.7-161.5 166.6 2.7 -4.9 -6.0 51 53 A D E +c 22 0A 95 -2,-0.3 3,-0.4 -30,-0.3 4,-0.2 -0.622 37.9 176.9 -64.6 105.6 -1.0 -3.8 -6.2 52 54 A A > + 0 0 3 -30,-1.0 4,-3.0 -2,-0.8 5,-0.2 0.139 47.3 115.2 -99.6 14.0 -2.6 -5.2 -3.1 53 55 A T H > S+ 0 0 22 -31,-1.4 4,-3.1 2,-0.2 5,-0.3 0.933 77.3 55.4 -39.9 -54.7 -5.9 -3.5 -4.0 54 56 A E H > S+ 0 0 100 -3,-0.4 4,-3.4 2,-0.2 5,-0.4 0.953 108.1 43.3 -37.0 -75.1 -7.0 -7.1 -4.3 55 57 A N H > S+ 0 0 68 1,-0.2 4,-2.4 -4,-0.2 5,-0.3 0.875 117.3 45.8 -57.1 -43.8 -6.1 -8.2 -0.9 56 58 A F H X S+ 0 0 27 -4,-3.0 4,-1.5 2,-0.2 -1,-0.2 0.952 120.1 38.2 -60.3 -48.0 -7.4 -5.1 0.9 57 59 A E H < S+ 0 0 69 -4,-3.1 -2,-0.2 -5,-0.2 -3,-0.2 0.871 118.9 47.8 -75.6 -38.4 -10.8 -5.0 -1.0 58 60 A D H < S+ 0 0 133 -4,-3.4 -1,-0.2 -5,-0.3 -3,-0.2 0.905 113.2 47.2 -67.4 -45.2 -11.2 -8.8 -1.0 59 61 A V H < S- 0 0 90 -4,-2.4 2,-1.7 -5,-0.4 -2,-0.2 0.840 96.2-163.1 -62.5 -32.2 -10.4 -9.0 2.7 60 62 A G < - 0 0 41 -4,-1.5 2,-0.4 -5,-0.3 6,-0.2 -0.130 9.6-173.1 81.8 -42.2 -12.9 -6.1 2.8 61 63 A H - 0 0 80 -2,-1.7 2,-0.3 4,-0.1 3,-0.1 -0.360 38.7 -58.9 64.1-110.7 -11.7 -5.0 6.3 62 64 A S >> - 0 0 58 -2,-0.4 4,-2.7 1,-0.2 3,-0.5 -0.960 37.9-107.1-168.5 150.9 -14.0 -2.1 7.6 63 65 A T H 3> S+ 0 0 110 -2,-0.3 4,-2.3 1,-0.3 5,-0.3 0.970 122.0 52.2 -50.1 -57.3 -15.1 1.4 6.6 64 66 A D H 3> S+ 0 0 129 1,-0.2 4,-2.6 2,-0.2 -1,-0.3 0.810 111.2 46.9 -41.1 -42.1 -12.9 2.8 9.4 65 67 A A H <> S+ 0 0 18 -3,-0.5 4,-2.9 2,-0.2 -1,-0.2 0.896 109.8 52.9 -78.0 -40.2 -9.9 0.8 8.0 66 68 A R H X S+ 0 0 105 -4,-2.7 4,-0.6 2,-0.2 -2,-0.2 0.848 116.0 41.3 -52.8 -41.4 -10.6 1.9 4.5 67 69 A E H < S+ 0 0 100 -4,-2.3 3,-0.4 -5,-0.2 4,-0.4 0.841 112.2 52.4 -87.2 -31.5 -10.6 5.5 5.7 68 70 A L H >< S+ 0 0 82 -4,-2.6 3,-2.3 -5,-0.3 4,-0.2 0.927 98.7 69.4 -60.6 -45.0 -7.6 5.0 8.1 69 71 A S H >< S+ 0 0 11 -4,-2.9 3,-2.5 1,-0.3 -1,-0.2 0.801 83.5 69.8 -45.3 -40.2 -5.7 3.6 5.0 70 72 A K G >< S+ 0 0 79 -4,-0.6 3,-2.1 -3,-0.4 -1,-0.3 0.820 84.9 69.6 -50.8 -35.3 -5.6 7.1 3.4 71 73 A T G < S+ 0 0 98 -3,-2.3 -1,-0.3 -4,-0.4 -2,-0.2 0.638 97.2 53.1 -62.5 -14.0 -3.1 8.2 6.0 72 74 A F G < S+ 0 0 14 -3,-2.5 -43,-2.8 -4,-0.2 2,-0.8 0.272 74.4 122.0-105.1 7.8 -0.5 5.9 4.4 73 75 A I E < + D 0 28A 51 -3,-2.1 -45,-0.2 -45,-0.2 3,-0.1 -0.633 22.0 158.9 -73.7 113.5 -0.8 7.2 0.8 74 76 A I E - 0 0 37 -47,-2.3 -71,-1.7 -2,-0.8 2,-0.2 0.691 64.0 -11.5 -96.4 -29.7 2.8 8.4 -0.2 75 77 A G E -aD 3 27A 0 -48,-1.5 -48,-2.2 -73,-0.2 2,-0.3 -0.767 57.5-129.1-154.6-169.4 2.3 8.2 -3.9 76 78 A E E -aD 4 26A 47 -73,-1.4 -71,-2.9 -50,-0.3 -50,-0.3 -0.984 43.9 -68.1-161.2 157.9 0.3 7.1 -7.0 77 79 A L E -a 5 0A 20 -52,-1.6 -71,-0.3 -2,-0.3 -73,-0.1 -0.171 60.5 -99.7 -54.6 130.4 0.6 5.3 -10.2 78 80 A H > - 0 0 79 -73,-1.4 3,-1.5 1,-0.1 -1,-0.1 -0.245 34.4-112.0 -44.3 137.5 2.7 7.1 -12.9 79 81 A P T 3 S+ 0 0 114 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.583 121.0 50.7 -58.2 -9.3 0.5 9.0 -15.4 80 82 A D T 3 0 0 156 1,-0.1 -2,-0.1 0, 0.0 -3,-0.0 0.749 360.0 360.0 -89.3 -33.3 1.7 6.4 -18.1 81 83 A D < 0 0 71 -3,-1.5 -3,-0.1 -76,-0.0 -4,-0.1 0.617 360.0 360.0 -88.7 360.0 0.9 3.4 -15.8