==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 17-FEB-03 1NZ9 . COMPND 2 MOLECULE: TRANSCRIPTION ANTITERMINATION PROTEIN NUSG; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMUS THERMOPHILUS; . AUTHOR P.REAY,K.YAMASAKI,T.TERADA,S.KURAMITSU,M.SHIROUZU, . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4720.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 56.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 21 36.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 127 A A 0 0 148 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 112.1 -1.0 -17.9 -6.5 2 128 A Q - 0 0 197 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.942 360.0-167.0-134.6 155.7 -2.2 -14.3 -6.8 3 129 A V - 0 0 79 -2,-0.3 3,-0.1 1,-0.1 0, 0.0 -0.993 19.6-153.1-143.8 148.8 -2.9 -11.4 -4.4 4 130 A A S S- 0 0 88 -2,-0.3 2,-0.3 1,-0.3 -1,-0.1 0.882 81.3 -6.9 -86.2 -44.4 -4.7 -8.0 -4.6 5 131 A F - 0 0 29 52,-0.0 2,-0.3 4,-0.0 -1,-0.3 -0.986 57.2-165.5-151.4 157.5 -2.8 -6.3 -1.8 6 132 A R > - 0 0 154 -2,-0.3 3,-1.2 -3,-0.1 19,-0.2 -0.979 29.6-108.1-150.5 134.1 -0.3 -7.0 1.0 7 133 A E T 3 S+ 0 0 142 -2,-0.3 19,-0.1 1,-0.2 3,-0.1 -0.211 103.7 30.8 -58.2 147.8 0.8 -5.1 4.1 8 134 A G T 3 S+ 0 0 51 17,-1.1 -1,-0.2 1,-0.3 18,-0.1 0.545 94.1 129.8 79.5 6.5 4.3 -3.6 3.9 9 135 A D < - 0 0 55 -3,-1.2 16,-2.0 15,-0.1 2,-0.4 -0.303 59.0-112.3 -86.9 174.5 4.0 -3.1 0.2 10 136 A Q E -A 24 0A 111 48,-0.4 48,-1.8 14,-0.2 2,-0.4 -0.928 30.4-177.7-114.0 132.6 4.7 0.0 -1.9 11 137 A V E -AB 23 57A 3 12,-1.1 12,-0.8 -2,-0.4 46,-0.2 -0.992 18.9-132.7-131.9 136.2 2.0 2.0 -3.7 12 138 A R E -AB 22 56A 121 44,-1.7 44,-2.1 -2,-0.4 10,-0.3 -0.316 32.2 -97.7 -80.0 166.3 2.3 5.1 -5.9 13 139 A V E - B 0 55A 21 8,-1.9 42,-0.2 5,-0.4 -1,-0.1 -0.289 22.8-126.2 -79.9 167.3 0.1 8.2 -5.6 14 140 A V - 0 0 66 40,-1.2 2,-0.2 1,-0.2 41,-0.1 0.968 66.6 -53.6 -79.3 -60.3 -2.9 8.9 -7.8 15 141 A S S > S+ 0 0 81 39,-0.2 3,-0.6 5,-0.0 -1,-0.2 -0.845 85.4 74.3-160.4-164.2 -2.2 12.4 -9.2 16 142 A G G > S- 0 0 46 -2,-0.2 3,-2.3 1,-0.2 -3,-0.0 -0.258 106.2 -34.3 77.4-168.0 -1.3 16.0 -8.4 17 143 A P G 3 S+ 0 0 107 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 0.708 142.1 57.1 -60.4 -19.0 2.2 17.2 -7.4 18 144 A F G X S+ 0 0 112 -3,-0.6 2,-1.0 1,-0.2 3,-0.9 0.212 71.2 112.4 -95.9 13.1 2.5 13.8 -5.6 19 145 A A T < S+ 0 0 44 -3,-2.3 -1,-0.2 1,-0.3 -3,-0.1 -0.088 74.1 54.2 -79.1 39.7 1.9 11.9 -8.8 20 146 A D T 3 S+ 0 0 107 -2,-1.0 2,-0.3 -5,-0.2 -1,-0.3 0.023 94.8 72.7-160.7 34.9 5.5 10.6 -8.7 21 147 A F < - 0 0 74 -3,-0.9 -8,-1.9 20,-0.0 2,-0.2 -0.944 55.4-148.1-148.0 167.1 6.0 9.0 -5.3 22 148 A T E -A 12 0A 37 -2,-0.3 18,-0.5 -10,-0.3 2,-0.3 -0.625 10.2-141.4-127.2-174.0 5.1 5.9 -3.3 23 149 A G E -A 11 0A 1 -12,-0.8 -12,-1.1 -2,-0.2 2,-0.7 -0.970 19.4-110.8-150.4 164.8 4.4 4.9 0.3 24 150 A T E -A 10 0A 56 14,-0.5 14,-1.0 -2,-0.3 2,-0.3 -0.872 34.1-129.0-104.0 108.5 4.9 2.2 2.9 25 151 A V E +C 37 0B 7 -16,-2.0 -17,-1.1 -2,-0.7 12,-0.2 -0.361 35.7 167.1 -57.4 113.9 1.7 0.5 3.9 26 152 A T E + 0 0 90 10,-2.3 2,-0.3 1,-0.4 -1,-0.2 0.760 64.8 0.5 -98.9 -33.9 1.6 0.6 7.7 27 153 A E E -C 36 0B 101 9,-0.8 9,-1.8 2,-0.0 -1,-0.4 -0.986 61.4-148.1-153.5 158.5 -2.1 -0.4 8.2 28 154 A I E -C 35 0B 67 -2,-0.3 7,-0.2 7,-0.2 -21,-0.0 -0.900 5.0-153.5-129.9 158.7 -5.2 -1.3 6.2 29 155 A N E >> +C 34 0B 72 5,-1.7 4,-1.9 -2,-0.3 5,-1.1 -0.742 22.0 162.4-135.3 86.7 -8.9 -0.9 6.6 30 156 A P T 45S+ 0 0 98 0, 0.0 -1,-0.1 0, 0.0 5,-0.0 0.838 76.0 63.9 -71.7 -34.1 -11.0 -3.6 4.8 31 157 A E T 45S+ 0 0 177 1,-0.1 -2,-0.0 3,-0.0 0, 0.0 0.835 127.5 9.8 -59.0 -33.6 -14.1 -2.8 6.9 32 158 A R T 45S- 0 0 178 -3,-0.3 -1,-0.1 2,-0.1 -3,-0.0 0.778 103.8-110.2-110.2 -61.2 -14.2 0.7 5.4 33 159 A G T <5 + 0 0 37 -4,-1.9 19,-0.4 1,-0.1 2,-0.2 0.638 63.6 132.1 127.0 42.7 -11.7 0.8 2.5 34 160 A K E < -C 29 0B 101 -5,-1.1 -5,-1.7 17,-0.2 2,-0.3 -0.682 32.7-161.0-115.6 170.3 -8.8 3.0 3.6 35 161 A V E -CD 28 50B 5 15,-2.7 15,-2.9 -2,-0.2 2,-0.5 -0.971 6.6-151.7-155.4 137.1 -5.0 2.7 3.5 36 162 A K E +CD 27 49B 75 -9,-1.8 -10,-2.3 -2,-0.3 -9,-0.8 -0.941 21.0 168.9-114.7 128.3 -2.1 4.4 5.3 37 163 A V E -CD 25 48B 2 11,-1.6 11,-1.6 -2,-0.5 2,-0.9 -0.998 34.4-125.5-139.9 142.5 1.4 4.8 3.7 38 164 A M E - D 0 47B 78 -14,-1.0 -14,-0.5 -2,-0.3 2,-0.1 -0.756 36.3-173.9 -89.9 104.0 4.5 6.8 4.5 39 165 A V E - D 0 46B 19 7,-1.5 7,-2.6 -2,-0.9 2,-0.4 -0.402 17.7-133.6 -91.8 171.1 5.4 8.9 1.5 40 166 A T E + D 0 45B 64 -18,-0.5 2,-0.4 5,-0.3 5,-0.2 -0.959 22.5 178.2-132.4 115.3 8.5 11.0 0.9 41 167 A I S S- 0 0 57 3,-2.1 -23,-0.0 -2,-0.4 -20,-0.0 -0.957 70.7 -1.4-120.2 133.8 8.3 14.6 -0.5 42 168 A F S S- 0 0 206 -2,-0.4 -1,-0.2 1,-0.2 3,-0.1 0.812 133.5 -54.6 61.7 30.4 11.2 16.9 -1.1 43 169 A G S S+ 0 0 66 1,-0.2 2,-0.3 -3,-0.2 -1,-0.2 0.923 118.0 102.3 70.3 45.3 13.5 14.3 0.4 44 170 A R S S- 0 0 154 2,-0.0 -3,-2.1 0, 0.0 -1,-0.2 -0.957 74.4-103.8-160.0 138.9 11.6 13.8 3.6 45 171 A E E +D 40 0B 107 -2,-0.3 -5,-0.3 -5,-0.2 -7,-0.0 -0.216 33.9 179.6 -60.8 151.9 9.2 11.3 5.1 46 172 A T E -D 39 0B 46 -7,-2.6 -7,-1.5 2,-0.1 2,-0.4 -0.604 17.0-150.5-160.0 91.2 5.5 12.3 5.3 47 173 A P E +D 38 0B 93 0, 0.0 2,-0.3 0, 0.0 -9,-0.2 -0.507 29.6 167.3 -68.4 117.5 2.9 9.9 6.8 48 174 A V E -D 37 0B 50 -11,-1.6 -11,-1.6 -2,-0.4 2,-0.4 -0.939 32.7-122.0-132.8 155.0 -0.4 10.5 5.1 49 175 A E E +D 36 0B 161 -2,-0.3 -13,-0.2 -13,-0.2 2,-0.2 -0.789 41.5 147.9 -98.8 138.1 -3.8 8.7 4.9 50 176 A L E -D 35 0B 21 -15,-2.9 -15,-2.7 -2,-0.4 2,-0.3 -0.695 32.2-122.4-144.3-162.2 -5.3 7.7 1.6 51 177 A D > - 0 0 40 -17,-0.3 3,-4.0 -2,-0.2 4,-0.3 -0.984 36.3 -98.5-153.1 156.7 -7.4 5.1 -0.1 52 178 A F G > S+ 0 0 108 -19,-0.4 3,-0.9 1,-0.3 -18,-0.1 0.767 121.9 64.0 -45.9 -29.4 -7.2 2.6 -3.0 53 179 A S G 3 S+ 0 0 107 1,-0.2 -1,-0.3 3,-0.0 -19,-0.0 0.501 110.4 37.1 -76.0 -3.5 -9.1 5.2 -5.0 54 180 A Q G < S+ 0 0 98 -3,-4.0 -40,-1.2 -40,-0.1 2,-0.3 0.171 115.4 56.3-131.8 15.1 -6.1 7.5 -4.6 55 181 A V E < -B 13 0A 16 -3,-0.9 2,-0.3 -4,-0.3 -42,-0.2 -0.899 61.2-146.2-142.0 170.0 -3.2 5.1 -4.8 56 182 A V E -B 12 0A 71 -44,-2.1 -44,-1.7 -2,-0.3 2,-0.4 -0.995 22.1-114.6-142.4 146.7 -1.7 2.4 -7.1 57 183 A K E B 11 0A 115 -2,-0.3 -46,-0.2 -46,-0.2 -52,-0.0 -0.656 360.0 360.0 -83.4 131.3 0.1 -0.9 -6.6 58 184 A A 0 0 103 -48,-1.8 -48,-0.4 -2,-0.4 -2,-0.0 -0.981 360.0 360.0-125.6 360.0 3.7 -1.0 -7.8