==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 07-DEC-06 2O6N . COMPND 2 MOLECULE: RH4B DESIGNED PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.SALES,T.ALBER . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3628.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 87.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 87.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A > 0 0 124 0, 0.0 4,-2.1 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 56.2 8.7 15.7 31.8 2 2 A E H > + 0 0 172 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.815 360.0 57.3 -62.9 -35.7 5.6 14.4 30.1 3 3 A I H > S+ 0 0 157 1,-0.2 4,-2.3 2,-0.2 -1,-0.2 0.959 110.4 44.7 -60.7 -47.4 4.6 17.7 28.5 4 4 A E H > S+ 0 0 60 1,-0.2 4,-2.4 2,-0.2 -2,-0.2 0.880 111.9 52.9 -63.7 -37.4 7.9 18.0 26.8 5 5 A Q H X S+ 0 0 88 -4,-2.1 4,-2.3 2,-0.2 -1,-0.2 0.907 109.2 48.6 -65.0 -42.3 7.8 14.4 25.7 6 6 A A H X S+ 0 0 41 -4,-2.4 4,-2.5 2,-0.2 5,-0.2 0.927 111.3 50.4 -64.0 -41.6 4.4 14.8 24.1 7 7 A K H X S+ 0 0 144 -4,-2.3 4,-2.9 1,-0.2 -2,-0.2 0.924 109.7 51.0 -60.7 -44.2 5.6 17.9 22.4 8 8 A K H X S+ 0 0 135 -4,-2.4 4,-2.1 1,-0.2 -1,-0.2 0.911 111.2 48.0 -60.0 -43.6 8.6 16.0 21.0 9 9 A E H X S+ 0 0 103 -4,-2.3 4,-1.9 2,-0.2 -1,-0.2 0.922 113.1 47.0 -65.2 -44.2 6.4 13.2 19.7 10 10 A I H X S+ 0 0 98 -4,-2.5 4,-2.5 1,-0.2 5,-0.2 0.943 109.9 54.0 -63.0 -44.8 4.0 15.6 18.0 11 11 A A H X S+ 0 0 40 -4,-2.9 4,-2.6 1,-0.2 -2,-0.2 0.899 107.5 51.0 -57.5 -40.5 6.8 17.6 16.5 12 12 A Y H X S+ 0 0 144 -4,-2.1 4,-2.3 2,-0.2 -1,-0.2 0.914 109.0 50.8 -66.2 -38.4 8.3 14.4 15.0 13 13 A L H X S+ 0 0 104 -4,-1.9 4,-2.3 2,-0.2 -2,-0.2 0.917 111.8 47.2 -64.9 -41.5 4.9 13.5 13.5 14 14 A I H X S+ 0 0 106 -4,-2.5 4,-2.9 2,-0.2 5,-0.2 0.930 111.0 52.1 -63.5 -43.2 4.6 17.0 11.9 15 15 A K H X S+ 0 0 146 -4,-2.6 4,-2.0 1,-0.2 -2,-0.2 0.893 112.3 45.4 -62.7 -40.1 8.2 16.8 10.6 16 16 A K H X S+ 0 0 93 -4,-2.3 4,-2.3 2,-0.2 -1,-0.2 0.901 114.1 48.5 -69.2 -40.9 7.5 13.4 8.9 17 17 A A H X S+ 0 0 48 -4,-2.3 4,-2.4 -5,-0.2 5,-0.2 0.940 112.1 48.6 -65.1 -46.5 4.2 14.6 7.5 18 18 A K H X S+ 0 0 136 -4,-2.9 4,-2.7 1,-0.2 5,-0.2 0.929 112.4 48.3 -57.1 -49.1 5.6 17.8 6.1 19 19 A X H X S+ 0 0 130 -4,-2.0 4,-2.4 -5,-0.2 -1,-0.2 0.924 111.7 48.2 -64.1 -42.4 8.6 16.0 4.5 20 20 A E H X S+ 0 0 118 -4,-2.3 4,-2.2 2,-0.2 -1,-0.2 0.914 113.3 48.2 -65.0 -40.6 6.4 13.3 2.9 21 21 A I H X S+ 0 0 105 -4,-2.4 4,-2.3 2,-0.2 -2,-0.2 0.940 112.4 47.9 -65.5 -45.7 4.0 15.9 1.5 22 22 A L H X S+ 0 0 87 -4,-2.7 4,-2.2 1,-0.2 -2,-0.2 0.897 111.6 51.6 -62.1 -39.8 6.7 18.1 0.1 23 23 A X H X S+ 0 0 87 -4,-2.4 4,-2.5 -5,-0.2 -1,-0.2 0.910 109.9 48.8 -61.0 -45.8 8.4 15.1 -1.5 24 24 A E H X S+ 0 0 101 -4,-2.2 4,-2.1 2,-0.2 -2,-0.2 0.890 109.9 50.5 -69.4 -32.7 5.2 14.0 -3.2 25 25 A I H X S+ 0 0 102 -4,-2.3 4,-2.5 2,-0.2 -1,-0.2 0.945 113.0 47.2 -63.3 -45.7 4.5 17.5 -4.6 26 26 A K H X S+ 0 0 124 -4,-2.2 4,-2.7 1,-0.2 -2,-0.2 0.917 112.0 49.1 -64.4 -42.7 8.1 17.6 -6.0 27 27 A K H X S+ 0 0 101 -4,-2.5 4,-1.9 2,-0.2 -1,-0.2 0.890 111.5 49.4 -68.2 -35.5 7.9 14.2 -7.5 28 28 A A H X S+ 0 0 47 -4,-2.1 4,-1.8 2,-0.2 5,-0.2 0.930 111.1 50.3 -64.3 -45.5 4.5 15.0 -9.1 29 29 A K H X S+ 0 0 150 -4,-2.5 4,-3.5 1,-0.2 3,-0.3 0.946 110.1 50.2 -53.7 -50.6 6.0 18.2 -10.5 30 30 A Q H < S+ 0 0 121 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.851 109.9 50.8 -62.5 -35.2 9.0 16.3 -11.9 31 31 A E H < S+ 0 0 162 -4,-1.9 -1,-0.2 -5,-0.2 -2,-0.2 0.840 122.0 31.4 -67.4 -36.5 6.7 13.7 -13.6 32 32 A I H < 0 0 148 -4,-1.8 -2,-0.2 -3,-0.3 -3,-0.2 0.905 360.0 360.0 -89.0 -49.3 4.5 16.4 -15.2 33 33 A A < 0 0 106 -4,-3.5 -1,-0.1 -5,-0.2 0, 0.0 -0.693 360.0 360.0-113.4 360.0 6.9 19.3 -15.9