==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 29-DEC-06 2OED . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR T.S.ULMER,B.E.RAMIREZ,F.DELAGLIO,A.BAX,A.GRISHAEV . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3890.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 117 0, 0.0 19,-2.2 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 147.3 -1.4 -13.5 -4.0 2 2 A Q E -A 19 0A 123 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.795 360.0-165.9 -90.5 126.2 -3.1 -11.3 -1.4 3 3 A Y E -A 18 0A 13 15,-3.1 15,-2.3 -2,-0.6 2,-0.4 -0.819 5.7-146.5-110.7 151.2 -1.1 -8.2 -0.6 4 4 A K E -Ab 17 51A 79 46,-2.0 48,-2.9 -2,-0.3 2,-0.5 -0.915 3.7-155.9-119.7 145.7 -1.6 -5.9 2.3 5 5 A L E -Ab 16 52A 1 11,-3.0 11,-2.3 -2,-0.4 2,-0.5 -0.984 4.6-162.4-120.9 125.5 -1.2 -2.2 2.7 6 6 A V E -Ab 15 53A 28 46,-2.5 48,-2.2 -2,-0.5 2,-0.6 -0.930 12.0-157.4-107.2 121.3 -0.6 -0.7 6.1 7 7 A I E +Ab 14 54A 4 7,-2.7 7,-2.1 -2,-0.5 2,-0.6 -0.917 18.9 176.8-109.8 115.8 -1.3 3.0 6.1 8 8 A N E +Ab 13 55A 75 46,-3.0 48,-2.0 -2,-0.6 5,-0.2 -0.685 27.6 159.5-112.8 70.6 0.3 5.2 8.7 9 9 A G - 0 0 5 3,-1.9 30,-0.1 -2,-0.6 -2,-0.0 -0.392 53.8-110.7 -90.3 171.1 -1.0 8.6 7.6 10 10 A K S S+ 0 0 169 -2,-0.1 3,-0.1 1,-0.1 -1,-0.1 0.852 115.4 4.9 -64.5 -41.6 -1.3 11.9 9.5 11 11 A T S S+ 0 0 143 1,-0.2 2,-0.5 0, 0.0 -1,-0.1 0.648 127.8 59.1-119.4 -30.1 -5.1 11.7 9.4 12 12 A L + 0 0 61 25,-0.1 -3,-1.9 2,-0.0 2,-0.4 -0.906 61.1 167.7-109.6 126.2 -5.9 8.3 7.9 13 13 A K E +A 8 0A 151 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -1.000 26.3 70.1-138.8 138.6 -4.6 5.1 9.6 14 14 A G E -A 7 0A 37 -7,-2.1 -7,-2.7 -2,-0.4 2,-0.3 -0.995 66.5 -74.9 160.8-150.3 -5.4 1.4 9.2 15 15 A E E +A 6 0A 123 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.987 31.7 174.9-145.5 153.5 -5.0 -1.4 6.8 16 16 A T E -A 5 0A 47 -11,-2.3 -11,-3.0 -2,-0.3 2,-0.3 -0.887 15.6-143.3-148.5 170.6 -6.5 -2.6 3.5 17 17 A T E -A 4 0A 90 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.945 10.8-173.3-138.3 164.3 -5.7 -5.4 1.0 18 18 A T E -A 3 0A 40 -15,-2.3 -15,-3.1 -2,-0.3 2,-0.4 -0.980 21.2-129.3-153.1 153.9 -5.7 -6.2 -2.7 19 19 A K E +A 2 0A 159 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.910 36.4 157.9-107.9 136.3 -5.2 -9.3 -4.8 20 20 A A - 0 0 15 -19,-2.2 3,-0.1 -2,-0.4 -2,-0.0 -0.989 48.9-124.1-153.8 159.4 -2.7 -9.3 -7.7 21 21 A V S S+ 0 0 126 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.750 95.5 7.3 -76.8 -24.1 -0.6 -11.6 -9.8 22 22 A D S > S- 0 0 61 -21,-0.1 4,-1.7 1,-0.1 5,-0.1 -0.949 77.9-104.0-151.7 168.1 2.7 -9.9 -8.9 23 23 A A H > S+ 0 0 30 -2,-0.3 4,-2.7 1,-0.2 5,-0.1 0.840 114.9 56.6 -66.5 -36.0 4.0 -7.1 -6.6 24 24 A E H > S+ 0 0 120 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.899 107.7 48.9 -66.9 -35.0 4.4 -4.5 -9.3 25 25 A T H > S+ 0 0 64 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.908 112.6 48.1 -68.7 -39.2 0.7 -4.8 -10.1 26 26 A A H X S+ 0 0 0 -4,-1.7 4,-2.7 1,-0.2 5,-0.2 0.912 108.5 55.2 -66.4 -40.9 -0.2 -4.5 -6.5 27 27 A E H X S+ 0 0 80 -4,-2.7 4,-2.9 1,-0.2 5,-0.2 0.916 106.7 49.9 -58.2 -45.5 2.0 -1.5 -6.1 28 28 A K H X S+ 0 0 128 -4,-2.0 4,-2.0 1,-0.2 -1,-0.2 0.918 111.8 48.5 -61.2 -42.4 0.2 0.3 -8.9 29 29 A A H X S+ 0 0 44 -4,-1.8 4,-2.2 1,-0.2 -2,-0.2 0.912 114.5 45.2 -63.8 -43.6 -3.1 -0.4 -7.3 30 30 A F H X S+ 0 0 4 -4,-2.7 4,-2.7 2,-0.2 -2,-0.2 0.870 110.2 53.2 -70.7 -36.1 -2.0 0.8 -3.9 31 31 A K H X S+ 0 0 76 -4,-2.9 4,-2.3 -5,-0.2 -1,-0.2 0.902 111.4 47.4 -66.2 -36.1 -0.3 3.9 -5.3 32 32 A Q H X S+ 0 0 103 -4,-2.0 4,-2.7 -5,-0.2 -2,-0.2 0.928 111.6 50.9 -67.1 -43.9 -3.6 4.8 -7.0 33 33 A Y H X S+ 0 0 70 -4,-2.2 4,-1.4 1,-0.2 -2,-0.2 0.918 110.8 48.5 -58.7 -46.7 -5.5 4.1 -3.8 34 34 A A H <>S+ 0 0 3 -4,-2.7 5,-2.6 1,-0.2 3,-0.3 0.931 112.1 48.2 -62.2 -45.7 -3.1 6.3 -1.8 35 35 A N H ><5S+ 0 0 115 -4,-2.3 3,-1.5 1,-0.2 -2,-0.2 0.920 109.4 53.0 -61.6 -43.9 -3.4 9.2 -4.3 36 36 A D H 3<5S+ 0 0 117 -4,-2.7 -1,-0.2 1,-0.3 -2,-0.2 0.794 113.3 44.8 -61.2 -29.2 -7.2 8.9 -4.3 37 37 A N T 3<5S- 0 0 81 -4,-1.4 -1,-0.3 -3,-0.3 -2,-0.2 0.298 116.5-112.1-100.5 10.3 -7.2 9.2 -0.5 38 38 A G T < 5 + 0 0 59 -3,-1.5 2,-0.5 -4,-0.3 -3,-0.2 0.695 63.2 150.7 71.5 21.0 -4.7 12.1 -0.4 39 39 A V < + 0 0 10 -5,-2.6 2,-0.4 -6,-0.2 -1,-0.2 -0.764 18.6 176.9 -91.6 127.0 -1.8 10.1 1.2 40 40 A D + 0 0 140 -2,-0.5 2,-0.2 14,-0.0 14,-0.0 -0.866 30.2 122.2-130.0 91.6 1.7 11.3 0.3 41 41 A G - 0 0 19 -2,-0.4 2,-0.3 -32,-0.0 15,-0.2 -0.643 61.4 -79.9-135.7-165.6 4.3 9.3 2.1 42 42 A V E -C 55 0A 103 13,-2.1 13,-2.0 -2,-0.2 2,-0.4 -0.794 45.0-140.9-105.1 146.3 7.4 7.1 1.8 43 43 A W E -C 54 0A 69 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.893 19.3-179.5-114.3 147.3 7.0 3.4 1.0 44 44 A T E -C 53 0A 89 9,-1.9 9,-1.9 -2,-0.4 2,-0.4 -0.908 10.0-158.4-131.5 160.5 8.5 0.1 1.9 45 45 A Y E -C 52 0A 74 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.992 1.8-161.7-139.7 130.3 7.8 -3.4 0.7 46 46 A D E >>> -C 51 0A 78 5,-2.2 5,-1.5 -2,-0.4 4,-1.0 -0.955 2.9-164.0-116.0 109.3 8.6 -6.6 2.6 47 47 A D T 345S+ 0 0 94 -2,-0.6 -1,-0.1 1,-0.2 5,-0.1 0.739 85.1 63.5 -65.0 -25.8 8.6 -9.6 0.3 48 48 A A T 345S+ 0 0 88 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.838 118.9 23.7 -69.2 -33.5 8.4 -12.0 3.3 49 49 A T T <45S- 0 0 86 -3,-0.6 -1,-0.2 2,-0.2 -2,-0.2 0.350 100.0-127.3-112.2 2.7 5.1 -10.8 4.5 50 50 A K T <5 + 0 0 54 -4,-1.0 -46,-2.0 1,-0.2 2,-0.4 0.893 62.6 142.5 51.0 42.6 3.8 -9.4 1.2 51 51 A T E < -bC 4 46A 23 -5,-1.5 -5,-2.2 -48,-0.2 2,-0.3 -0.969 39.6-161.6-122.2 132.3 3.1 -6.1 3.0 52 52 A F E -bC 5 45A 6 -48,-2.9 -46,-2.5 -2,-0.4 2,-0.4 -0.802 10.8-162.0-103.6 146.3 3.6 -2.5 1.8 53 53 A T E -bC 6 44A 41 -9,-1.9 -9,-1.9 -2,-0.3 2,-0.4 -0.997 4.7-167.8-131.1 137.9 3.7 0.3 4.4 54 54 A V E -bC 7 43A 2 -48,-2.2 -46,-3.0 -2,-0.4 2,-0.4 -0.989 6.5-173.1-127.1 129.9 3.2 4.0 3.7 55 55 A T E bC 8 42A 61 -13,-2.0 -13,-2.1 -2,-0.4 -46,-0.2 -0.981 360.0 360.0-127.0 133.9 4.0 6.7 6.2 56 56 A E 0 0 92 -48,-2.0 -47,-0.2 -2,-0.4 -1,-0.1 0.629 360.0 360.0 -94.7 360.0 3.4 10.4 6.1