==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 09-APR-03 1OF9 . COMPND 2 MOLECULE: PORE-FORMING PEPTIDE AMEOBAPORE A; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTAMOEBA HISTOLYTICA; . AUTHOR O.HECHT,K.SCHLEINKOFER,H.BRUHN,M.LEIPPE,N.VAN NULAND, . 77 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5136.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 58 75.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 41 53.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 77 0, 0.0 76,-0.1 0, 0.0 74,-0.0 0.000 360.0 360.0 360.0-116.6 1.8 -4.2 -5.3 2 2 A E + 0 0 149 74,-0.1 75,-0.1 1,-0.0 74,-0.0 0.923 360.0 139.2 60.2 47.0 4.8 -2.7 -3.4 3 3 A I S S- 0 0 51 73,-0.4 74,-0.1 38,-0.0 39,-0.0 0.956 85.7 -24.4 -82.8 -63.1 4.3 -5.2 -0.6 4 4 A L S > S+ 0 0 92 72,-0.6 4,-1.6 2,-0.0 3,-0.1 -0.221 91.4 128.7-148.0 46.8 7.9 -6.2 0.2 5 5 A a H >> + 0 0 10 2,-0.2 5,-1.1 1,-0.2 4,-0.8 0.969 70.0 62.4 -67.8 -55.4 9.8 -5.5 -3.0 6 6 A N H 45S+ 0 0 147 1,-0.3 -1,-0.2 3,-0.2 4,-0.1 0.784 106.1 51.6 -39.5 -31.4 12.5 -3.4 -1.3 7 7 A L H >5S+ 0 0 65 3,-0.2 4,-1.9 2,-0.1 -1,-0.3 0.962 119.3 31.5 -72.0 -54.7 13.1 -6.7 0.5 8 8 A b H >X5S+ 0 0 18 -4,-1.6 4,-3.2 2,-0.2 3,-2.1 0.993 125.0 41.0 -64.8 -79.5 13.4 -8.8 -2.7 9 9 A T H 3X5S+ 0 0 23 -4,-0.8 4,-1.4 1,-0.3 -3,-0.2 0.739 117.3 56.0 -40.6 -25.6 14.8 -6.3 -5.2 10 10 A G H 3>X S+ 0 0 8 -4,-3.2 3,-1.2 1,-0.3 4,-0.9 0.938 102.1 50.2 -50.6 -54.1 18.5 -9.5 -5.3 13 13 A N H >< S+ 0 0 93 -4,-1.4 3,-0.6 1,-0.3 4,-0.5 0.831 108.1 55.4 -54.0 -33.6 21.0 -6.7 -5.7 14 14 A T H >X S+ 0 0 57 -4,-0.6 4,-1.8 -3,-0.3 3,-1.0 0.797 97.7 61.7 -69.5 -29.7 22.8 -8.3 -2.8 15 15 A L H S+ 0 0 17 34,-0.0 4,-0.6 3,-0.0 34,-0.1 0.599 86.0 113.7 95.5 16.7 25.7 -19.6 -5.2 25 25 A D H >> S+ 0 0 112 2,-0.2 4,-1.0 1,-0.2 3,-0.5 0.854 70.6 56.2 -84.4 -40.2 24.6 -22.0 -2.5 26 26 A K H 3> S+ 0 0 113 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.647 96.8 71.2 -65.5 -14.1 24.6 -19.5 0.3 27 27 A V H 3> S+ 0 0 0 2,-0.2 4,-3.2 1,-0.2 -1,-0.2 0.957 102.2 37.9 -66.0 -52.7 22.2 -17.6 -2.0 28 28 A K H < S+ 0 0 29 -4,-3.2 2,-1.9 1,-0.3 3,-0.6 0.681 94.5 86.6 -61.5 -16.3 11.9 -15.4 2.2 36 36 A N T 3< S+ 0 0 128 -4,-1.8 -1,-0.3 1,-0.2 -4,-0.1 -0.289 76.0 69.1 -81.1 51.9 11.3 -17.1 5.5 37 37 A K T 3 S+ 0 0 180 -2,-1.9 -1,-0.2 5,-0.0 -2,-0.1 -0.053 75.8 83.1-159.7 38.3 9.1 -14.1 6.5 38 38 A A < + 0 0 26 -3,-0.6 3,-0.2 4,-0.1 5,-0.2 0.698 27.5 143.8-107.3 -88.8 6.0 -14.4 4.3 39 39 A S S S+ 0 0 130 1,-0.2 2,-0.2 3,-0.1 -3,-0.0 0.891 74.6 48.8 42.7 50.9 3.3 -16.8 5.5 40 40 A G S > S- 0 0 39 0, 0.0 3,-1.8 0, 0.0 4,-0.5 -0.749 120.4 -15.9-172.1-139.8 0.7 -14.3 4.1 41 41 A F T 3 S+ 0 0 139 1,-0.3 3,-0.3 -2,-0.2 4,-0.3 0.784 137.8 49.5 -57.6 -28.6 -0.0 -12.3 1.0 42 42 A I T 3> S+ 0 0 41 1,-0.2 4,-3.4 2,-0.2 3,-0.4 0.545 82.4 101.5 -86.4 -9.7 3.6 -13.0 -0.0 43 43 A A H <> S+ 0 0 42 -3,-1.8 4,-2.2 1,-0.3 3,-0.3 0.895 90.6 36.1 -36.7 -62.3 3.0 -16.6 0.7 44 44 A T H > S+ 0 0 85 -4,-0.5 4,-0.6 -3,-0.3 -1,-0.3 0.767 114.2 60.5 -64.7 -26.1 2.6 -17.3 -3.0 45 45 A L H > S+ 0 0 11 -3,-0.4 4,-1.4 -4,-0.3 -2,-0.2 0.885 106.4 45.5 -67.9 -40.1 5.2 -14.7 -3.6 46 46 A c H >X S+ 0 0 20 -4,-3.4 4,-1.6 -3,-0.3 3,-0.7 0.979 114.9 44.9 -66.0 -58.2 7.7 -16.7 -1.6 47 47 A T H 3X S+ 0 0 69 -4,-2.2 4,-2.8 1,-0.2 -1,-0.2 0.651 104.8 70.5 -60.1 -14.4 6.8 -20.0 -3.3 48 48 A K H 3X S+ 0 0 76 -4,-0.6 4,-2.4 -6,-0.3 -1,-0.2 0.957 99.1 42.9 -67.2 -52.6 7.0 -18.0 -6.5 49 49 A V H X - 0 0 17 -4,-5.0 4,-2.2 -5,-0.1 3,-1.1 0.315 9.1-135.1 125.6 104.7 14.3 -21.0 -9.1 54 54 A I H 3> S+ 0 0 28 1,-0.3 4,-1.3 2,-0.2 5,-0.1 0.855 114.5 51.7 -47.6 -39.2 16.5 -18.9 -6.8 55 55 A D H 3> S+ 0 0 77 2,-0.2 4,-1.7 1,-0.2 -1,-0.3 0.835 105.9 55.9 -67.3 -33.5 19.3 -19.8 -9.2 56 56 A K H X> S+ 0 0 104 -3,-1.1 4,-2.8 2,-0.2 3,-0.5 0.964 101.7 53.9 -62.3 -54.6 17.1 -18.6 -12.1 57 57 A L H 3X S+ 0 0 2 -4,-2.2 4,-1.5 1,-0.3 -1,-0.2 0.858 112.2 46.5 -47.1 -39.9 16.6 -15.1 -10.6 58 58 A I H 3X S+ 0 0 22 -4,-1.3 4,-2.1 -5,-0.3 -1,-0.3 0.818 108.7 56.2 -72.4 -32.0 20.4 -15.0 -10.4 59 59 A Q H X>S+ 0 0 52 -4,-2.8 4,-2.2 1,-0.2 5,-1.2 0.934 107.8 50.9 -56.4 -49.5 18.4 -13.4 -15.2 61 61 A I H 3<5S+ 0 0 25 -4,-1.5 -1,-0.2 1,-0.3 -2,-0.2 0.926 101.7 61.1 -53.5 -49.3 20.7 -10.9 -13.6 62 62 A E H 3<5S+ 0 0 149 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.830 111.7 41.4 -46.5 -36.8 23.7 -12.5 -15.3 63 63 A D H <<5S- 0 0 130 -4,-1.3 -2,-0.2 -3,-0.9 -1,-0.2 0.988 135.3 -75.6 -74.6 -70.8 22.0 -11.7 -18.5 64 64 A K T <5S+ 0 0 179 -4,-2.2 2,-0.7 2,-0.1 -3,-0.2 0.167 79.7 138.6 171.5 40.1 20.7 -8.2 -17.8 65 65 A V < - 0 0 34 -5,-1.2 -2,-0.1 -8,-0.1 5,-0.0 -0.893 44.4-139.7-105.8 108.4 17.7 -8.4 -15.6 66 66 A D > - 0 0 114 -2,-0.7 4,-1.0 1,-0.1 -2,-0.1 0.205 31.1 -98.2 -50.3-177.2 17.6 -5.8 -12.9 67 67 A A H > S+ 0 0 7 2,-0.2 4,-0.7 3,-0.1 -55,-0.1 0.709 124.7 45.8 -80.3 -22.2 16.5 -6.7 -9.4 68 68 A N H >>>S+ 0 0 89 2,-0.2 4,-3.0 3,-0.2 3,-0.6 0.948 110.0 48.8 -82.6 -58.8 13.1 -5.3 -10.2 69 69 A A H 3>5S+ 0 0 49 1,-0.3 4,-0.8 2,-0.2 -2,-0.2 0.826 115.1 49.4 -49.9 -33.8 12.5 -6.9 -13.6 70 70 A I H 3X5S+ 0 0 0 -4,-1.0 4,-1.0 2,-0.2 -1,-0.3 0.834 117.0 41.1 -74.4 -34.4 13.6 -10.1 -11.9 71 71 A b H XX5S+ 0 0 0 -4,-0.7 4,-0.9 -3,-0.6 3,-0.6 0.984 111.4 51.2 -75.1 -66.2 11.2 -9.4 -9.0 72 72 A A H 3<5S+ 0 0 54 -4,-3.0 3,-0.5 1,-0.2 -3,-0.2 0.774 102.1 71.9 -41.2 -29.2 8.2 -8.2 -11.0 73 73 A K H 3<