==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 25-APR-03 1OG7 . COMPND 2 MOLECULE: BACTERIOCIN SAKACIN P; . SOURCE 2 ORGANISM_SCIENTIFIC: LACTOBACILLUS SAKE; . AUTHOR M.UTENG,H.H.HAUGE,P.R.MARKWICK,G.FIMLAND,D.MANTZILAS, . 43 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3599.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 67.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 9.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 11.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 18.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 25.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 156 0, 0.0 8,-1.6 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 103.7 -14.2 4.7 4.0 2 2 A Y E +A 8 0A 154 6,-0.3 6,-0.2 1,-0.1 3,-0.1 -0.751 360.0 174.2 -74.7 115.4 -16.4 3.1 1.4 3 3 A Y E - 0 0 161 4,-2.2 2,-0.2 -2,-0.6 -1,-0.1 0.712 47.6 -94.4 -95.9 -27.1 -16.5 5.5 -1.6 4 4 A G E > S+A 7 0A 26 3,-1.0 3,-2.7 0, 0.0 2,-1.0 -0.703 91.0 44.9 128.1 177.8 -18.5 3.3 -4.1 5 5 A N T 3 S- 0 0 169 1,-0.3 -3,-0.0 -2,-0.2 3,-0.0 -0.405 132.2 -31.5 48.2 -87.0 -18.0 0.8 -7.0 6 6 A G T 3 S+ 0 0 9 -2,-1.0 2,-0.6 8,-0.0 10,-0.6 0.292 105.2 120.8-129.9 2.5 -15.3 -1.4 -5.4 7 7 A V E < +A 4 0A 39 -3,-2.7 -4,-2.2 8,-0.3 -3,-1.0 -0.651 20.4 159.2 -86.5 112.5 -13.4 1.2 -3.3 8 8 A H E -A 2 0A 84 -2,-0.6 -6,-0.3 5,-0.3 -1,-0.1 -0.623 27.3-163.8-126.2 68.1 -13.2 0.5 0.5 9 9 A a + 0 0 20 -8,-1.6 5,-0.1 -2,-0.2 -2,-0.0 -0.255 27.8 158.9 -59.6 138.7 -10.2 2.6 1.6 10 10 A G S S- 0 0 69 -8,-0.0 -1,-0.1 -2,-0.0 -8,-0.0 0.641 77.5 -53.7-115.3 -68.5 -8.4 2.2 5.0 11 11 A K S S- 0 0 178 0, 0.0 -2,-0.1 0, 0.0 3,-0.0 0.419 129.5 -1.1-143.7 -40.0 -4.8 3.7 4.6 12 12 A H S S+ 0 0 76 7,-0.0 14,-0.2 15,-0.0 15,-0.1 -0.052 116.4 87.0-136.9 22.9 -3.2 2.1 1.5 13 13 A S + 0 0 35 9,-0.1 2,-0.5 10,-0.1 -5,-0.3 0.092 37.8 158.7-134.1 11.4 -6.1 -0.2 0.7 14 14 A a - 0 0 51 1,-0.1 4,-0.2 -7,-0.1 3,-0.2 -0.313 41.2-147.4 -45.5 94.0 -8.7 1.6 -1.6 15 15 A T >> + 0 0 42 -2,-0.5 2,-2.4 1,-0.2 3,-1.7 0.766 43.8 157.8 -64.6 -52.9 -10.0 -1.8 -2.7 16 16 A V T 34 S- 0 0 70 -10,-0.6 -1,-0.2 1,-0.3 -9,-0.1 -0.439 94.1 -63.5 63.8 -70.7 -11.3 -1.9 -6.4 17 17 A D T 34 S+ 0 0 136 -2,-2.4 -1,-0.3 -3,-0.2 -2,-0.1 0.033 140.7 52.0-173.8 -6.4 -10.6 -5.7 -6.2 18 18 A W T X> + 0 0 119 -3,-1.7 4,-1.6 -4,-0.2 3,-1.2 0.093 59.0 120.4-132.9 16.0 -6.8 -5.4 -5.8 19 19 A G H 3X S+ 0 0 3 -4,-1.7 4,-1.9 1,-0.3 -5,-0.1 0.733 76.5 62.6 -65.5 -18.5 -6.1 -2.9 -2.8 20 20 A T H 3> S+ 0 0 117 -5,-0.2 4,-2.1 2,-0.2 -1,-0.3 0.836 102.9 50.9 -66.0 -36.3 -4.3 -5.9 -1.1 21 21 A A H <> S+ 0 0 43 -3,-1.2 4,-2.6 2,-0.2 5,-0.2 0.984 114.8 38.9 -64.6 -62.4 -1.8 -5.8 -4.0 22 22 A I H X S+ 0 0 63 -4,-1.6 4,-2.7 1,-0.2 -2,-0.2 0.909 116.8 54.1 -59.6 -35.8 -1.1 -2.0 -3.8 23 23 A G H X S+ 0 0 5 -4,-1.9 4,-2.2 -5,-0.2 -1,-0.2 0.919 111.0 44.2 -60.3 -45.9 -1.2 -2.2 0.0 24 24 A N H X S+ 0 0 99 -4,-2.1 4,-1.9 2,-0.2 -2,-0.2 0.912 113.4 50.2 -65.6 -46.9 1.5 -5.1 0.0 25 25 A I H X S+ 0 0 112 -4,-2.6 4,-2.0 2,-0.2 -2,-0.2 0.937 112.2 49.6 -55.9 -49.6 3.7 -3.2 -2.6 26 26 A G H X S+ 0 0 36 -4,-2.7 4,-2.1 -5,-0.2 -2,-0.2 0.895 111.9 46.3 -54.8 -49.1 3.4 -0.1 -0.4 27 27 A N H < S+ 0 0 81 -4,-2.2 -1,-0.2 2,-0.2 -2,-0.2 0.765 107.3 58.1 -72.8 -22.8 4.4 -2.0 2.9 28 28 A N H >X S+ 0 0 93 -4,-1.9 3,-0.9 2,-0.2 4,-0.5 0.897 106.6 48.1 -71.3 -38.4 7.3 -3.7 1.0 29 29 A A H >X S+ 0 0 37 -4,-2.0 3,-1.6 1,-0.2 4,-1.5 0.972 110.1 52.9 -58.3 -48.9 8.7 -0.2 0.3 30 30 A A H 3< S+ 0 0 31 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.536 105.5 57.0 -64.2 -3.6 8.1 0.4 4.0 31 31 A A H <4 S+ 0 0 71 -3,-0.9 -1,-0.2 1,-0.1 -2,-0.2 0.316 94.6 57.8-121.9 11.6 10.1 -2.8 4.7 32 32 A N H << S- 0 0 46 -3,-1.6 2,-1.7 -4,-0.5 -2,-0.2 0.795 89.6-177.7 -61.0 -48.9 13.0 -1.5 3.0 33 33 A W S < S+ 0 0 208 -4,-1.5 -2,-0.1 1,-0.2 -3,-0.1 -0.135 80.3 75.8 65.7 -30.7 12.1 1.0 5.9 34 34 A A S >S- 0 0 24 -2,-1.7 5,-2.3 -5,-0.1 4,-0.3 0.371 124.4-116.0 -59.7 -9.6 15.0 2.7 4.2 35 35 A T T > 5 - 0 0 68 -6,-0.6 3,-1.8 2,-0.2 -5,-0.2 0.980 60.8 -38.6 80.8 69.7 11.8 3.1 2.0 36 36 A G T 3 5S- 0 0 55 -7,-1.4 -1,-0.2 -8,-0.3 -7,-0.1 0.631 125.2 -45.8 58.6 13.2 12.0 1.5 -1.5 37 37 A G T > 5S+ 0 0 36 -8,-0.2 3,-1.8 5,-0.0 -1,-0.3 0.457 102.4 136.7 99.9 10.7 15.7 2.6 -1.5 38 38 A N T < 5S+ 0 0 137 -3,-1.8 -3,-0.2 -4,-0.3 -2,-0.1 0.895 83.1 34.1 -51.1 -48.4 15.0 6.2 -0.2 39 39 A A T >