==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 22-JAN-07 2OMQ . COMPND 2 MOLECULE: VEALYL PEPTIDE DERIVED FROM HUMAN INSULIN CHAIN . SOURCE 2 SYNTHETIC: YES . AUTHOR M.IVANOVA,M.R.SAWAYA,D.EISENBERG . 24 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2305.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 70.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 41.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 2 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 29.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 110 0, 0.0 2,-0.5 0, 0.0 12,-0.2 0.000 360.0 360.0 360.0 112.4 9.1 1.0 3.0 2 2 A E E -A 12 0A 104 10,-1.9 10,-2.7 2,-0.0 2,-0.6 -0.984 360.0-172.3-121.8 129.4 9.7 0.7 6.7 3 3 A A E -A 11 0A 39 -2,-0.5 2,-0.7 8,-0.2 8,-0.2 -0.938 8.8-173.9-118.1 109.1 7.0 0.3 9.3 4 4 A L E -A 10 0A 69 6,-2.9 6,-2.3 -2,-0.6 2,-0.7 -0.884 9.2-177.7-107.5 116.7 8.3 0.5 12.8 5 5 A Y E A 9 0A 114 -2,-0.7 4,-0.2 4,-0.2 -2,-0.0 -0.850 360.0 360.0-116.1 92.8 5.9 -0.1 15.7 6 6 A L 0 0 170 2,-1.4 -2,-0.0 -2,-0.7 0, 0.0 -0.328 360.0 360.0-122.6 360.0 8.0 0.4 18.7 7 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 1 B V 0 0 150 0, 0.0 -2,-1.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 178.6 5.0 4.7 19.2 9 2 B E E -A 5 0A 103 -4,-0.2 2,-0.4 2,-0.0 -4,-0.2 -0.980 360.0-178.4-146.1 131.3 5.2 4.6 15.4 10 3 B A E -A 4 0A 44 -6,-2.3 -6,-2.9 -2,-0.4 2,-0.4 -0.988 11.4-171.5-127.2 122.5 7.5 5.6 12.6 11 4 B L E -A 3 0A 47 -2,-0.4 2,-0.6 -8,-0.2 -8,-0.2 -0.967 15.3-167.5-119.5 134.4 6.7 5.0 8.9 12 5 B Y E A 2 0A 142 -10,-2.7 -10,-1.9 -2,-0.4 -2,-0.0 -0.973 360.0 360.0-111.3 101.9 8.9 5.5 5.9 13 6 B L 0 0 85 -2,-0.6 -1,-0.1 -12,-0.2 5,-0.1 0.162 360.0 360.0-101.1 360.0 6.5 5.3 3.1 14 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 1 C V 0 0 155 0, 0.0 2,-0.4 0, 0.0 12,-0.2 0.000 360.0 360.0 360.0 139.7 0.8 1.1 -8.4 16 2 C E E -B 26 0B 79 10,-2.4 10,-3.1 2,-0.0 2,-0.5 -0.982 360.0-174.7-136.7 126.0 1.7 0.9 -4.8 17 3 C A E -B 25 0B 47 -2,-0.4 2,-0.5 8,-0.2 8,-0.2 -0.970 2.3-171.5-128.0 117.8 -0.7 0.8 -1.9 18 4 C L E -B 24 0B 24 6,-2.7 6,-2.4 -2,-0.5 2,-0.5 -0.941 8.8-178.9-113.4 123.9 0.4 0.9 1.7 19 5 C Y E B 23 0B 154 -2,-0.5 4,-0.2 4,-0.2 -2,-0.0 -0.922 360.0 360.0-121.2 93.7 -2.1 0.3 4.5 20 6 C L 0 0 56 2,-1.9 -9,-0.1 -2,-0.5 -2,-0.0 -0.621 360.0 360.0-122.9 360.0 0.1 0.7 7.6 21 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 22 1 D V 0 0 109 0, 0.0 -2,-1.9 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 145.8 -2.5 5.3 8.0 23 2 D E E -B 19 0B 123 -4,-0.2 2,-0.4 2,-0.0 -4,-0.2 -0.985 360.0-174.3-147.9 139.2 -2.5 5.0 4.2 24 3 D A E -B 18 0B 16 -6,-2.4 -6,-2.7 -2,-0.4 2,-0.5 -0.988 11.8-168.8-131.2 122.8 -0.3 6.0 1.4 25 4 D L E -B 17 0B 70 -2,-0.4 2,-0.6 -8,-0.2 -8,-0.2 -0.960 11.0-169.7-117.5 131.8 -1.4 5.4 -2.2 26 5 D Y E B 16 0B 107 -10,-3.1 -10,-2.4 -2,-0.5 -2,-0.0 -0.950 360.0 360.0-119.4 106.8 0.8 5.8 -5.3 27 6 D L 0 0 188 -2,-0.6 -10,-0.0 -12,-0.2 -1,-0.0 0.089 360.0 360.0-109.7 360.0 -1.5 5.6 -8.2