==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 23-JAN-07 2ONA . COMPND 2 MOLECULE: MVGGVV PEPTIDE DERIVED FROM ALZHEIMER'S A-BETA, . SOURCE 2 SYNTHETIC: YES . AUTHOR S.SAMBASHIVAN,M.R.SAWAYA,D.EISENBERG . 24 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2407.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 10 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 41.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 2 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 176 0, 0.0 12,-2.7 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 132.6 1.4 5.2 1.3 2 2 A V E +A 12 0A 121 10,-0.2 2,-0.3 2,-0.0 10,-0.2 -0.995 360.0 155.4-137.4 140.4 5.2 4.6 1.3 3 3 A G E -A 11 0A 48 8,-1.9 8,-2.3 -2,-0.4 2,-0.3 -0.992 20.0-165.0-165.4 155.4 7.7 5.1 4.1 4 4 A G E -A 10 0A 29 -2,-0.3 2,-0.4 6,-0.2 6,-0.2 -0.997 2.2-166.3-146.0 145.4 11.0 4.1 5.6 5 5 A V E A 9 0A 97 4,-3.1 4,-2.4 -2,-0.3 11,-0.0 -0.983 360.0 360.0-134.3 123.8 12.8 4.5 9.0 6 6 A V 0 0 92 -2,-0.4 18,-0.1 2,-0.2 20,-0.0 -0.932 360.0 360.0-109.4 360.0 16.5 3.9 9.7 7 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 1 B M 0 0 143 0, 0.0 2,-0.3 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 113.6 15.2 -0.4 10.2 9 2 B V E +A 5 0A 103 -4,-2.4 -4,-3.1 2,-0.0 2,-0.3 -0.999 360.0 173.4-136.6 138.8 11.7 -0.6 8.6 10 3 B G E +A 4 0A 58 -2,-0.3 2,-0.3 -6,-0.2 -6,-0.2 -0.994 13.6 159.0-144.9 136.5 10.4 -0.0 5.0 11 4 B G E -A 3 0A 41 -8,-2.3 -8,-1.9 -2,-0.3 2,-0.4 -0.995 28.9-146.9-159.5 163.3 6.9 -0.6 3.6 12 5 B V E A 2 0A 117 -2,-0.3 -10,-0.2 -10,-0.2 -2,-0.0 -0.998 360.0 360.0-135.5 127.7 4.2 0.1 1.0 13 6 B V 0 0 162 -12,-2.7 -2,-0.0 -2,-0.4 0, 0.0 -0.973 360.0 360.0-138.0 360.0 0.4 0.2 1.5 14 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 1 C M 0 0 182 0, 0.0 12,-2.0 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 140.8 15.4 1.7 -0.0 16 2 C V E +B 26 0B 47 10,-0.2 2,-0.3 -6,-0.1 10,-0.2 -1.000 360.0 164.0-136.8 134.6 16.6 1.8 3.6 17 3 C G E +B 25 0B 35 8,-1.9 8,-2.2 -2,-0.4 2,-0.3 -0.992 4.6 170.8-148.8 151.6 20.2 1.2 4.9 18 4 C G E -B 24 0B 35 -2,-0.3 2,-0.3 6,-0.2 6,-0.2 -0.993 15.5-159.2-158.8 159.2 22.2 1.7 8.1 19 5 C V E B 23 0B 103 4,-1.9 4,-1.5 -2,-0.3 -2,-0.0 -0.994 360.0 360.0-141.5 137.2 25.5 1.0 9.9 20 6 C V 0 0 182 -2,-0.3 -2,-0.0 2,-0.2 4,-0.0 -0.937 360.0 360.0-144.2 360.0 26.3 1.2 13.6 21 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 22 1 D M 0 0 189 0, 0.0 2,-0.4 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 122.3 26.7 5.8 12.6 23 2 D V E +B 19 0B 111 -4,-1.5 -4,-1.9 2,-0.0 2,-0.3 -0.994 360.0 162.5-134.4 135.4 25.5 6.3 9.0 24 3 D G E -B 18 0B 53 -2,-0.4 2,-0.3 -6,-0.2 -6,-0.2 -0.974 10.7-175.3-148.5 161.3 22.0 5.9 7.5 25 4 D G E -B 17 0B 37 -8,-2.2 -8,-1.9 -2,-0.3 2,-0.3 -0.993 13.5-161.3-156.9 157.9 19.8 6.7 4.6 26 5 D V E B 16 0B 80 -2,-0.3 -10,-0.2 -10,-0.2 -2,-0.0 -0.987 360.0 360.0-137.6 132.2 16.3 6.5 3.1 27 6 D V 0 0 166 -12,-2.0 -2,-0.0 -2,-0.3 0, 0.0 -0.998 360.0 360.0-133.2 360.0 15.6 6.9 -0.7