==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 26-JAN-07 2OON . COMPND 2 MOLECULE: PEPTIDE YY; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR O.ZERBE,A.NEUMOIN,J.MARES . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4192.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 30.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 244 0, 0.0 5,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 149.5 -11.1 -0.7 -1.4 2 2 A P + 0 0 109 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.276 360.0 44.5 -70.8 167.9 -9.5 -4.0 -2.5 3 3 A A S S- 0 0 79 21,-0.0 21,-0.0 -2,-0.0 0, 0.0 0.991 132.6 -9.4 56.2 90.1 -6.0 -4.1 -4.3 4 4 A K S S- 0 0 33 20,-0.1 17,-0.1 16,-0.0 16,-0.0 0.990 89.5-137.9 52.8 87.4 -3.7 -1.8 -2.2 5 5 A P - 0 0 54 0, 0.0 2,-0.3 0, 0.0 19,-0.1 -0.247 16.8-162.6 -66.0 161.0 -6.1 -0.0 0.1 6 6 A E + 0 0 152 -5,-0.1 0, 0.0 2,-0.0 0, 0.0 -0.903 28.5 140.0-150.4 111.0 -5.8 3.7 0.8 7 7 A A - 0 0 82 -2,-0.3 2,-0.2 -6,-0.0 0, 0.0 -0.573 30.1-160.1-153.9 84.3 -7.5 5.4 3.8 8 8 A P + 0 0 126 0, 0.0 2,-0.1 0, 0.0 -2,-0.0 -0.512 19.8 165.6 -70.4 136.5 -5.5 8.2 5.6 9 9 A G - 0 0 58 -2,-0.2 3,-0.3 0, 0.0 -2,-0.0 -0.135 55.5 -66.0-120.2-142.9 -6.6 9.0 9.2 10 10 A E S S+ 0 0 199 1,-0.2 0, 0.0 -2,-0.1 0, 0.0 0.015 121.4 56.3-106.3 21.9 -5.0 10.9 12.1 11 11 A D S S+ 0 0 147 2,-0.0 2,-0.4 5,-0.0 -1,-0.2 -0.332 71.0 118.0-152.3 55.2 -2.1 8.4 12.7 12 12 A A + 0 0 60 -3,-0.3 2,-0.2 4,-0.0 0, 0.0 -0.934 31.7 172.9-135.4 108.7 -0.1 8.0 9.5 13 13 A S > - 0 0 92 -2,-0.4 4,-1.6 1,-0.0 -2,-0.0 -0.484 54.5 -87.4 -98.6 178.7 3.6 8.9 9.2 14 14 A A T 4 S+ 0 0 96 1,-0.2 4,-0.4 2,-0.2 -1,-0.0 0.567 130.0 49.2 -62.0 -9.3 6.2 8.5 6.4 15 15 A E T > S+ 0 0 148 2,-0.2 4,-2.1 3,-0.1 3,-0.4 0.843 101.5 56.0 -98.3 -48.9 6.8 5.0 8.1 16 16 A E H > S+ 0 0 103 1,-0.2 4,-1.8 2,-0.2 -2,-0.2 0.871 106.2 57.9 -51.9 -34.2 3.2 3.6 8.4 17 17 A L H X S+ 0 0 95 -4,-1.6 4,-2.7 2,-0.2 -1,-0.2 0.911 103.2 49.1 -62.7 -46.1 3.1 4.3 4.6 18 18 A S H > S+ 0 0 70 -4,-0.4 4,-2.7 -3,-0.4 -2,-0.2 0.927 112.0 50.2 -59.8 -41.5 6.1 2.0 3.9 19 19 A R H < S+ 0 0 190 -4,-2.1 -2,-0.2 1,-0.2 -1,-0.2 0.845 114.1 45.1 -62.1 -34.5 4.3 -0.7 6.1 20 20 A Y H X S+ 0 0 94 -4,-1.8 4,-0.6 -5,-0.2 3,-0.3 0.835 115.8 45.5 -77.6 -36.2 1.1 -0.1 4.0 21 21 A Y H X S+ 0 0 133 -4,-2.7 4,-0.6 1,-0.2 3,-0.3 0.833 111.9 51.1 -75.8 -34.8 3.0 -0.2 0.7 22 22 A A H < S+ 0 0 72 -4,-2.7 -1,-0.2 -5,-0.2 -2,-0.2 0.448 100.7 66.5 -83.2 -0.6 5.1 -3.3 1.6 23 23 A S H >> S+ 0 0 68 -3,-0.3 4,-2.7 -4,-0.2 3,-1.0 0.795 89.7 61.6 -87.6 -32.9 1.8 -5.2 2.6 24 24 A L H 3X S+ 0 0 56 -4,-0.6 4,-3.1 -3,-0.3 5,-0.3 0.933 99.7 55.7 -59.2 -46.2 0.4 -5.3 -1.0 25 25 A R H 3X S+ 0 0 213 -4,-0.6 4,-0.6 1,-0.2 -1,-0.3 0.650 112.7 44.1 -60.3 -17.8 3.4 -7.4 -2.1 26 26 A H H <> S+ 0 0 126 -3,-1.0 4,-2.2 2,-0.2 -2,-0.2 0.883 111.9 49.1 -92.8 -50.0 2.4 -9.9 0.7 27 27 A Y H < S+ 0 0 124 -4,-2.7 -2,-0.2 2,-0.2 -3,-0.2 0.882 112.9 49.9 -53.8 -43.8 -1.4 -9.9 0.1 28 28 A L H >< S+ 0 0 106 -4,-3.1 3,-1.7 1,-0.2 4,-0.3 0.942 111.3 47.4 -61.7 -47.1 -0.7 -10.6 -3.6 29 29 A N H ><>S+ 0 0 76 -4,-0.6 3,-1.5 -5,-0.3 5,-0.6 0.813 98.1 71.7 -66.0 -26.5 1.7 -13.4 -2.8 30 30 A L T 3<5S+ 0 0 61 -4,-2.2 6,-1.1 1,-0.3 -1,-0.3 0.427 102.3 44.2 -65.0 -3.6 -1.0 -14.7 -0.3 31 31 A V T < 5S+ 0 0 83 -3,-1.7 -1,-0.3 4,-0.2 -2,-0.2 0.379 108.4 68.0-113.4 -6.7 -2.9 -15.7 -3.5 32 32 A T T < 5S- 0 0 86 -3,-1.5 -3,-0.1 -4,-0.3 -2,-0.1 0.571 120.9 -25.6 -85.4-129.3 0.2 -17.2 -5.4 33 33 A R T 5S+ 0 0 249 2,-0.0 2,-0.3 0, 0.0 -3,-0.1 0.879 134.2 52.8 -53.4 -46.5 2.0 -20.5 -4.2 34 34 A Q S