==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 26-JAN-07 2OOP . COMPND 2 MOLECULE: PEPTIDE YY; . SOURCE 2 ORGANISM_SCIENTIFIC: SUS SCROFA; . AUTHOR O.ZERBE,A.NEUMOIN,J.MARES . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3859.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A Y 0 0 219 0, 0.0 2,-0.7 0, 0.0 3,-0.5 0.000 360.0 360.0 360.0 81.2 5.6 -7.8 -1.2 2 2 A P - 0 0 78 0, 0.0 28,-0.1 0, 0.0 29,-0.1 -0.661 360.0 -22.5 -74.1 109.1 2.4 -7.8 -3.3 3 3 A A S S+ 0 0 74 -2,-0.7 24,-0.1 1,-0.1 0, 0.0 0.980 76.3 171.1 49.3 83.5 2.3 -4.3 -4.9 4 4 A K + 0 0 108 -3,-0.5 -1,-0.1 23,-0.1 20,-0.1 -0.604 8.3 171.8-118.8 69.1 4.4 -2.1 -2.5 5 5 A P - 0 0 60 0, 0.0 2,-0.2 0, 0.0 0, 0.0 -0.292 37.0-101.6 -69.9 161.1 4.8 1.3 -4.3 6 6 A E - 0 0 172 1,-0.1 18,-0.0 -2,-0.0 -2,-0.0 -0.591 36.1-110.3 -83.0 145.0 6.4 4.3 -2.5 7 7 A Y - 0 0 83 -2,-0.2 -1,-0.1 1,-0.1 10,-0.0 -0.519 15.0-141.4 -71.1 142.8 4.2 7.1 -1.1 8 8 A P - 0 0 54 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.971 35.1-150.0 -67.9 -51.2 4.4 10.5 -2.9 9 9 A G - 0 0 22 1,-0.1 3,-0.3 2,-0.0 8,-0.0 -0.914 50.0 -32.5 114.5-150.8 4.2 12.6 0.3 10 10 A E S S+ 0 0 191 -2,-0.3 -1,-0.1 1,-0.2 7,-0.0 -0.029 112.0 94.6 -95.0 22.8 2.6 16.1 0.8 11 11 A D S S+ 0 0 120 2,-0.1 -1,-0.2 3,-0.0 -2,-0.0 0.923 76.5 59.2 -74.4 -55.2 3.6 17.1 -2.9 12 12 A A S S- 0 0 26 -3,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.200 106.7 -72.3 -69.9 168.0 0.3 16.2 -4.5 13 13 A S > - 0 0 70 1,-0.1 4,-2.2 4,-0.0 5,-0.4 -0.223 42.1-112.9 -60.2 156.4 -3.1 17.7 -3.5 14 14 A P T 4 S+ 0 0 107 0, 0.0 4,-0.2 0, 0.0 -1,-0.1 0.721 118.0 34.5 -67.3 -22.7 -4.7 16.8 -0.1 15 15 A E T > S+ 0 0 133 2,-0.1 4,-2.4 3,-0.1 5,-0.1 0.857 116.3 51.8 -93.9 -48.8 -7.6 15.0 -2.0 16 16 A E H > S+ 0 0 128 1,-0.2 4,-2.1 2,-0.2 3,-0.1 0.937 115.7 41.6 -55.8 -52.6 -5.7 13.6 -5.1 17 17 A L H X S+ 0 0 14 -4,-2.2 4,-2.6 2,-0.2 -1,-0.2 0.870 110.1 60.0 -61.3 -38.1 -3.0 12.0 -2.9 18 18 A S H > S+ 0 0 70 -5,-0.4 4,-0.7 2,-0.2 -2,-0.2 0.889 106.5 47.3 -58.7 -40.9 -5.9 10.9 -0.5 19 19 A R H >X S+ 0 0 181 -4,-2.4 3,-1.5 2,-0.2 4,-0.5 0.959 110.3 50.7 -61.4 -54.7 -7.4 8.9 -3.4 20 20 A Y H >X S+ 0 0 70 -4,-2.1 3,-1.4 1,-0.3 4,-1.1 0.863 97.2 70.8 -50.4 -40.8 -4.0 7.4 -4.3 21 21 A Y H 3X S+ 0 0 115 -4,-2.6 4,-3.3 1,-0.3 -1,-0.3 0.816 87.4 65.3 -46.4 -38.2 -3.7 6.3 -0.6 22 22 A A H X S+ 0 0 54 -4,-1.5 4,-1.3 2,-0.2 3,-1.3 0.930 111.8 43.1 -47.0 -56.4 -2.1 -3.6 -0.8 28 28 A L H >X S+ 0 0 74 -4,-1.4 4,-2.1 1,-0.3 3,-0.8 0.933 110.5 56.1 -60.5 -43.5 -2.0 -3.9 3.0 29 29 A N H 3< S+ 0 0 75 -4,-3.0 -1,-0.3 1,-0.3 -2,-0.2 0.588 107.1 51.2 -62.7 -14.7 -5.7 -4.9 3.0 30 30 A L H << S+ 0 0 108 -3,-1.3 3,-0.4 -4,-0.8 -1,-0.3 0.684 109.5 48.5 -90.7 -27.2 -4.7 -7.7 0.6 31 31 A V H X< S+ 0 0 66 -4,-1.3 3,-1.3 -3,-0.8 2,-0.3 0.749 92.9 78.0 -82.5 -24.4 -1.9 -8.8 3.0 32 32 A T T 3< S+ 0 0 82 -4,-2.1 -1,-0.2 1,-0.3 -3,-0.1 0.137 93.6 53.8 -71.4 22.0 -4.4 -8.8 6.0 33 33 A R T 3 S+ 0 0 215 -3,-0.4 -1,-0.3 -2,-0.3 -2,-0.1 -0.029 77.5 172.9-147.0 28.6 -5.6 -12.2 4.7 34 34 A Q < - 0 0 183 -3,-1.3 2,-0.3 1,-0.0 -3,-0.1 -0.064 10.9-166.7 -43.9 143.3 -2.4 -14.3 4.4 35 35 A R 0 0 214 1,-0.2 -2,-0.0 0, 0.0 -1,-0.0 -0.962 360.0 360.0-138.5 151.2 -3.0 -17.9 3.5 36 36 A Y 0 0 282 -2,-0.3 -1,-0.2 0, 0.0 -2,-0.0 0.999 360.0 360.0 59.8 360.0 -0.9 -21.1 3.6