==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 27-JAN-07 2OP7 . COMPND 2 MOLECULE: NEDD4-LIKE E3 UBIQUITIN-PROTEIN LIGASE WWP1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.N.QIN,M.F.LI,H.PU,S.SANKARAN,S.AHMED,J.X.SONG . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3753.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 46.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 15.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N 0 0 113 0, 0.0 20,-0.1 0, 0.0 12,-0.0 0.000 360.0 360.0 360.0 -66.4 5.5 -4.3 -7.3 2 2 A E + 0 0 148 1,-0.2 9,-0.0 0, 0.0 0, 0.0 0.856 360.0 44.7 -97.4 -77.9 8.4 -6.1 -5.6 3 3 A E S S- 0 0 64 1,-0.1 2,-2.7 3,-0.0 8,-0.3 -0.453 87.7-114.9 -73.0 143.3 7.2 -8.5 -3.0 4 4 A P - 0 0 108 0, 0.0 -1,-0.1 0, 0.0 6,-0.0 -0.299 63.1 -86.5 -75.0 56.4 4.3 -10.8 -3.9 5 5 A L S S+ 0 0 62 -2,-2.7 5,-0.2 6,-0.1 16,-0.0 0.881 79.0 170.7 37.6 54.2 2.2 -9.1 -1.3 6 6 A P - 0 0 49 0, 0.0 5,-0.0 0, 0.0 -3,-0.0 0.192 47.6 -94.1 -74.9-160.7 3.6 -11.6 1.2 7 7 A E S S+ 0 0 181 1,-0.1 17,-0.1 3,-0.1 3,-0.1 0.894 117.1 58.8 -85.4 -47.1 3.2 -11.6 5.0 8 8 A G S S- 0 0 32 1,-0.1 16,-2.5 15,-0.1 2,-0.3 0.938 125.2 -3.0 -45.4 -63.4 6.4 -9.7 5.8 9 9 A W E -A 23 0A 118 14,-0.3 2,-0.4 15,-0.1 14,-0.3 -0.904 67.7-139.6-132.0 159.4 5.4 -6.7 3.8 10 10 A E E -A 22 0A 71 12,-3.1 12,-3.1 -2,-0.3 2,-0.5 -0.987 12.1-169.8-126.3 128.2 2.5 -5.8 1.5 11 11 A I E -A 21 0A 9 -2,-0.4 2,-0.4 -8,-0.3 10,-0.3 -0.973 5.4-171.0-120.8 120.8 2.8 -3.9 -1.7 12 12 A R E -A 20 0A 135 8,-2.2 8,-3.9 -2,-0.5 2,-0.3 -0.920 4.4-160.0-114.0 136.4 -0.4 -2.7 -3.5 13 13 A Y + 0 0 157 -2,-0.4 3,-0.1 6,-0.3 4,-0.0 -0.839 25.4 147.5-115.0 152.1 -0.5 -1.2 -7.0 14 14 A T + 0 0 65 1,-0.6 -1,-0.1 -2,-0.3 2,-0.1 0.365 61.4 30.9-140.0 -75.6 -3.0 1.0 -8.7 15 15 A R S >> S- 0 0 137 1,-0.0 -1,-0.6 0, 0.0 4,-0.5 -0.220 106.4 -69.0 -86.7-179.9 -1.8 3.5 -11.2 16 16 A E T 34 S- 0 0 184 1,-0.3 3,-0.0 2,-0.1 -1,-0.0 0.855 126.8 -15.6 -32.6 -59.0 1.1 3.3 -13.5 17 17 A G T 34 S+ 0 0 23 -4,-0.0 -1,-0.3 2,-0.0 -4,-0.0 -0.120 104.5 111.9-144.4 38.5 3.4 3.6 -10.5 18 18 A V T <4 + 0 0 9 -3,-0.5 14,-0.4 14,-0.1 -2,-0.1 0.489 47.9 128.4 -89.7 -6.2 1.2 4.8 -7.8 19 19 A R < - 0 0 76 -4,-0.5 -6,-0.3 12,-0.1 2,-0.3 0.112 43.0-156.7 -43.4 164.9 1.6 1.5 -6.0 20 20 A Y E -A 12 0A 53 -8,-3.9 -8,-2.2 11,-0.1 2,-0.3 -0.927 8.8-132.0-145.4 167.5 2.6 1.5 -2.4 21 21 A F E -AB 11 30A 50 9,-0.8 9,-2.9 -2,-0.3 2,-0.3 -0.937 13.1-175.1-126.6 148.7 4.2 -0.7 0.3 22 22 A V E -AB 10 29A 67 -12,-3.1 -12,-3.1 -2,-0.3 7,-0.3 -0.887 12.9-152.8-146.9 110.0 3.3 -1.5 3.8 23 23 A D E -A 9 0A 26 5,-4.5 -14,-0.3 2,-0.4 -15,-0.1 -0.410 42.7 -94.6 -79.4 157.8 5.5 -3.6 6.1 24 24 A H S S+ 0 0 159 -16,-2.5 2,-0.3 -2,-0.1 -15,-0.1 0.769 117.8 33.1 -40.2 -29.2 4.1 -5.7 8.9 25 25 A N S > S- 0 0 82 -17,-0.2 3,-2.0 3,-0.1 -2,-0.4 -0.905 100.0-101.0-130.0 157.8 4.8 -2.6 10.9 26 26 A T T 3 S+ 0 0 117 -2,-0.3 3,-0.4 1,-0.3 -2,-0.1 0.492 101.9 99.9 -55.0 0.9 4.8 1.1 10.1 27 27 A R T 3 S+ 0 0 204 1,-0.3 2,-0.4 -4,-0.0 -1,-0.3 0.874 95.6 18.6 -55.5 -40.2 8.6 0.5 9.8 28 28 A T S < S+ 0 0 64 -3,-2.0 -5,-4.5 2,-0.0 2,-0.4 -0.851 77.3 148.4-139.1 99.7 8.2 0.4 6.1 29 29 A T E -B 22 0A 60 -3,-0.4 2,-0.6 -2,-0.4 -7,-0.3 -0.918 24.9-162.4-137.5 108.4 5.1 1.9 4.5 30 30 A T E -B 21 0A 56 -9,-2.9 -9,-0.8 -2,-0.4 2,-0.5 -0.808 7.9-169.9 -94.2 122.7 5.2 3.5 1.1 31 31 A F - 0 0 188 -2,-0.6 2,-0.2 -11,-0.2 -11,-0.1 -0.958 3.5-173.0-117.6 120.1 2.3 5.8 0.3 32 32 A K - 0 0 89 -2,-0.5 -14,-0.1 -14,-0.4 -12,-0.1 -0.643 43.8 -64.4-106.2 164.8 1.7 7.1 -3.2 33 33 A D - 0 0 93 -2,-0.2 2,-2.7 1,-0.2 3,-0.4 -0.090 54.0-109.2 -45.7 142.9 -0.7 9.7 -4.5 34 34 A P > + 0 0 100 0, 0.0 3,-1.4 0, 0.0 -1,-0.2 -0.287 69.8 140.2 -74.9 55.3 -4.3 8.6 -4.1 35 35 A R T 3 + 0 0 133 -2,-2.7 3,-0.3 1,-0.3 4,-0.1 0.735 56.6 76.9 -69.4 -23.3 -4.6 8.1 -7.9 36 36 A N T 3 S+ 0 0 69 -3,-0.4 2,-0.8 1,-0.3 -1,-0.3 0.667 74.3 83.4 -60.3 -15.3 -6.6 5.0 -7.2 37 37 A G S < S- 0 0 48 -3,-1.4 -1,-0.3 2,-0.0 -2,-0.1 -0.132 76.2-169.9 -82.1 39.6 -9.3 7.5 -6.5 38 38 A K 0 0 177 -2,-0.8 -2,-0.1 -3,-0.3 -3,-0.0 -0.004 360.0 360.0 -34.0 124.1 -10.1 7.6 -10.2 39 39 A S 0 0 177 -4,-0.1 -1,-0.2 0, 0.0 -3,-0.0 0.465 360.0 360.0 -77.8 360.0 -12.5 10.5 -10.6