==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 13-FEB-07 2OVC . COMPND 2 MOLECULE: POTASSIUM VOLTAGE-GATED CHANNEL SUBFAMILY KQT MEM . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR R.J.HOWARD,K.A.CLARK,J.M.HOLTON,D.L.MINOR . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3319.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 83.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A D > 0 0 148 0, 0.0 4,-1.9 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 116.3 16.4 8.2 24.0 2 5 A E H > + 0 0 170 1,-0.2 4,-2.5 2,-0.2 5,-0.1 0.711 360.0 55.4 -72.2 -28.7 18.9 10.8 22.8 3 6 A I H > S+ 0 0 138 2,-0.2 4,-2.8 3,-0.2 -1,-0.2 0.875 108.5 49.0 -68.3 -43.3 21.4 8.5 21.2 4 7 A S H > S+ 0 0 74 2,-0.2 4,-2.1 1,-0.2 -2,-0.2 0.936 113.7 47.8 -58.9 -47.8 18.7 7.0 19.0 5 8 A M H X S+ 0 0 132 -4,-1.9 4,-2.2 2,-0.2 -2,-0.2 0.927 112.7 46.5 -59.2 -49.4 17.6 10.5 18.1 6 9 A M H X S+ 0 0 120 -4,-2.5 4,-2.6 1,-0.2 5,-0.2 0.887 109.5 57.0 -62.9 -39.5 21.2 11.6 17.4 7 10 A G H X S+ 0 0 34 -4,-2.8 4,-2.0 1,-0.2 -1,-0.2 0.905 108.1 45.7 -54.6 -46.9 21.7 8.4 15.3 8 11 A R H X S+ 0 0 179 -4,-2.1 4,-2.3 2,-0.2 -2,-0.2 0.884 111.7 52.0 -68.8 -39.7 18.7 9.3 13.1 9 12 A V H X S+ 0 0 87 -4,-2.2 4,-2.2 2,-0.2 -2,-0.2 0.901 110.9 47.7 -60.4 -43.9 19.9 13.0 12.7 10 13 A V H X S+ 0 0 61 -4,-2.6 4,-1.7 2,-0.2 -2,-0.2 0.898 111.2 51.1 -63.4 -42.2 23.4 11.8 11.6 11 14 A K H X S+ 0 0 135 -4,-2.0 4,-2.2 -5,-0.2 -2,-0.2 0.910 109.8 49.5 -59.2 -45.0 21.8 9.3 9.2 12 15 A V H X S+ 0 0 87 -4,-2.3 4,-2.8 1,-0.2 -2,-0.2 0.921 108.8 53.8 -61.6 -44.4 19.6 12.1 7.7 13 16 A E H X S+ 0 0 94 -4,-2.2 4,-1.3 1,-0.2 -1,-0.2 0.836 109.0 48.0 -56.4 -39.2 22.7 14.3 7.3 14 17 A K H X S+ 0 0 99 -4,-1.7 4,-1.6 2,-0.2 -1,-0.2 0.892 112.6 47.8 -74.1 -38.2 24.6 11.6 5.4 15 18 A Q H X S+ 0 0 132 -4,-2.2 4,-2.5 1,-0.2 -2,-0.2 0.905 109.1 54.2 -67.2 -39.2 21.6 11.0 3.1 16 19 A V H X S+ 0 0 78 -4,-2.8 4,-1.9 2,-0.2 -1,-0.2 0.826 108.2 49.9 -60.4 -33.6 21.2 14.7 2.5 17 20 A Q H X S+ 0 0 96 -4,-1.3 4,-2.0 2,-0.2 -1,-0.2 0.864 110.7 49.4 -72.9 -38.1 25.0 15.0 1.4 18 21 A S H X S+ 0 0 56 -4,-1.6 4,-1.9 2,-0.2 -2,-0.2 0.878 110.0 51.4 -69.9 -39.9 24.5 12.1 -0.9 19 22 A I H X S+ 0 0 97 -4,-2.5 4,-1.9 2,-0.2 -2,-0.2 0.892 109.0 50.7 -59.8 -44.5 21.4 13.8 -2.4 20 23 A E H X S+ 0 0 124 -4,-1.9 4,-1.7 1,-0.2 -2,-0.2 0.912 109.6 50.3 -65.1 -40.2 23.3 17.1 -2.9 21 24 A H H X S+ 0 0 118 -4,-2.0 4,-1.6 2,-0.2 -1,-0.2 0.887 107.8 53.7 -63.2 -37.9 26.1 15.2 -4.7 22 25 A K H X S+ 0 0 143 -4,-1.9 4,-1.5 1,-0.2 -1,-0.2 0.886 109.3 47.7 -65.2 -41.2 23.5 13.5 -7.0 23 26 A L H X S+ 0 0 93 -4,-1.9 4,-1.6 2,-0.2 -1,-0.2 0.798 104.8 59.6 -65.1 -36.5 22.0 16.8 -8.0 24 27 A D H X>S+ 0 0 44 -4,-1.7 5,-1.9 2,-0.2 4,-1.8 0.876 105.0 52.2 -57.9 -38.2 25.5 18.2 -8.6 25 28 A L H <5S+ 0 0 100 -4,-1.6 -2,-0.2 1,-0.2 -1,-0.2 0.910 110.5 45.1 -62.0 -45.3 25.7 15.4 -11.2 26 29 A L H <5S+ 0 0 153 -4,-1.5 -1,-0.2 1,-0.2 -2,-0.2 0.776 118.2 44.9 -66.6 -26.2 22.4 16.4 -12.9 27 30 A L H <5S- 0 0 108 -4,-1.6 -2,-0.2 2,-0.1 -1,-0.2 0.688 109.1-119.3 -93.1 -24.8 23.5 20.1 -12.9 28 31 A G T <5 + 0 0 39 -4,-1.8 2,-0.3 1,-0.4 -3,-0.2 0.739 65.3 139.8 85.7 23.7 27.0 19.6 -14.1 29 32 A F < 0 0 122 -5,-1.9 -1,-0.4 -6,-0.2 -2,-0.1 -0.775 360.0 360.0 -85.9 141.4 28.6 21.0 -11.0 30 33 A Y 0 0 258 -2,-0.3 -1,-0.1 -3,-0.1 -5,-0.1 0.363 360.0 360.0-138.0 360.0 31.7 19.0 -10.0