==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 13-FEB-07 2OVG . COMPND 2 MOLECULE: PHAGE LAMBDA CRO; . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE LAMBDA; . AUTHOR B.M.HALL,A.HEROUX,S.A.ROBERTS,M.H.CORDES . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4503.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 70.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 17.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 34.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 3 A Q 0 0 194 0, 0.0 41,-0.4 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-138.7 -0.3 10.9 1.2 2 4 A R - 0 0 126 39,-0.1 2,-0.4 37,-0.1 39,-0.2 -0.487 360.0-152.2 -73.9 146.4 -3.1 13.5 0.9 3 5 A I E -A 40 0A 31 37,-2.7 37,-3.3 -2,-0.1 2,-0.0 -0.948 20.2-111.6-117.0 140.1 -5.0 14.4 4.1 4 6 A T E > -A 39 0A 53 -2,-0.4 4,-2.8 35,-0.2 35,-0.2 -0.377 25.3-119.4 -67.2 150.8 -8.6 15.6 4.1 5 7 A L H > S+ 0 0 9 33,-2.2 4,-2.8 1,-0.2 5,-0.2 0.926 115.1 51.8 -54.1 -45.0 -9.1 19.2 5.2 6 8 A K H > S+ 0 0 128 32,-0.2 4,-2.2 1,-0.2 -1,-0.2 0.934 111.3 45.5 -59.0 -49.8 -11.2 18.0 8.1 7 9 A D H > S+ 0 0 95 1,-0.2 4,-2.1 2,-0.2 -1,-0.2 0.903 112.7 51.8 -63.9 -38.1 -8.6 15.6 9.3 8 10 A Y H X S+ 0 0 3 -4,-2.8 4,-3.0 1,-0.2 5,-0.4 0.935 110.1 47.7 -62.0 -47.5 -5.8 18.2 8.9 9 11 A A H X S+ 0 0 5 -4,-2.8 4,-1.8 1,-0.2 -1,-0.2 0.871 111.7 51.0 -63.8 -37.1 -7.7 20.8 10.9 10 12 A M H < S+ 0 0 137 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.905 117.2 40.1 -63.5 -40.4 -8.4 18.2 13.7 11 13 A R H < S+ 0 0 172 -4,-2.1 -2,-0.2 -5,-0.2 -1,-0.2 0.896 130.6 23.1 -74.9 -46.3 -4.7 17.2 13.8 12 14 A F H < S- 0 0 64 -4,-3.0 4,-0.4 -5,-0.2 -3,-0.2 0.576 107.7-115.2-106.0 -13.0 -3.0 20.6 13.5 13 15 A G X - 0 0 29 -4,-1.8 4,-2.2 -5,-0.4 5,-0.2 0.099 27.8 -81.3 94.1 157.0 -5.7 23.1 14.7 14 16 A Q H > S+ 0 0 102 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.882 123.1 52.7 -63.0 -40.3 -7.7 25.8 13.0 15 17 A T H > S+ 0 0 92 2,-0.2 4,-2.7 1,-0.2 5,-0.2 0.952 112.6 43.0 -61.5 -52.5 -5.0 28.5 13.3 16 18 A K H > S+ 0 0 87 -4,-0.4 4,-2.9 1,-0.2 5,-0.2 0.895 114.1 51.5 -63.3 -40.1 -2.3 26.5 11.7 17 19 A T H X S+ 0 0 0 -4,-2.2 4,-1.7 2,-0.2 -1,-0.2 0.938 112.0 46.9 -60.9 -48.2 -4.6 25.2 9.0 18 20 A A H X>S+ 0 0 2 -4,-2.6 5,-2.2 2,-0.2 4,-0.9 0.943 115.6 44.3 -58.2 -50.6 -5.7 28.8 8.1 19 21 A K H ><5S+ 0 0 167 -4,-2.7 3,-0.6 1,-0.2 -2,-0.2 0.909 112.4 51.9 -65.9 -38.2 -2.2 30.1 8.0 20 22 A D H 3<5S+ 0 0 46 -4,-2.9 28,-0.5 1,-0.2 -1,-0.2 0.821 116.1 41.3 -65.4 -31.1 -0.8 27.2 6.0 21 23 A L H 3<5S- 0 0 42 -4,-1.7 -1,-0.2 -5,-0.2 -2,-0.2 0.485 110.3-121.2 -95.9 -2.9 -3.6 27.6 3.5 22 24 A G T <<5S+ 0 0 69 -4,-0.9 2,-0.2 -3,-0.6 -3,-0.2 0.760 75.1 105.5 68.9 27.3 -3.4 31.4 3.4 23 25 A V S > - 0 0 179 -2,-0.2 3,-1.3 -3,-0.1 4,-1.3 -0.538 40.1-110.3 -80.6 153.8 -9.0 33.0 7.5 25 27 A P H 3> S+ 0 0 59 0, 0.0 4,-2.7 0, 0.0 5,-0.2 0.873 117.7 63.5 -51.3 -37.6 -10.2 30.4 10.0 26 28 A S H 3> S+ 0 0 53 1,-0.2 4,-2.7 2,-0.2 5,-0.2 0.839 98.9 54.5 -58.5 -33.1 -13.8 31.1 8.8 27 29 A S H <> S+ 0 0 51 -3,-1.3 4,-1.9 2,-0.2 -1,-0.2 0.908 110.3 45.3 -67.3 -41.6 -12.8 29.9 5.3 28 30 A I H X S+ 0 0 5 -4,-1.3 4,-2.4 -3,-0.2 5,-0.2 0.950 114.5 48.6 -60.6 -50.4 -11.6 26.6 6.8 29 31 A N H X S+ 0 0 68 -4,-2.7 4,-2.5 1,-0.2 -2,-0.2 0.917 112.1 48.1 -59.5 -47.3 -14.6 26.2 9.0 30 32 A Q H X S+ 0 0 130 -4,-2.7 4,-2.3 -5,-0.2 -1,-0.2 0.890 111.1 50.3 -62.6 -39.7 -17.1 26.9 6.1 31 33 A A H X>S+ 0 0 6 -4,-1.9 5,-1.6 2,-0.2 4,-0.8 0.872 111.1 49.1 -70.5 -35.2 -15.4 24.5 3.8 32 34 A I H ><5S+ 0 0 51 -4,-2.4 3,-1.0 1,-0.2 -2,-0.2 0.958 113.3 46.1 -65.4 -48.8 -15.4 21.7 6.3 33 35 A H H 3<5S+ 0 0 172 -4,-2.5 -2,-0.2 1,-0.3 -1,-0.2 0.882 108.2 56.7 -60.5 -38.1 -19.1 22.3 7.1 34 36 A A H 3<5S- 0 0 66 -4,-2.3 -1,-0.3 -5,-0.2 -2,-0.2 0.710 106.7-128.6 -67.1 -20.7 -19.9 22.5 3.3 35 37 A G T <<5 + 0 0 48 -3,-1.0 -3,-0.2 -4,-0.8 -2,-0.1 0.762 43.4 172.6 73.6 27.0 -18.4 19.0 2.9 36 38 A R < - 0 0 131 -5,-1.6 2,-1.3 1,-0.1 -1,-0.2 -0.365 40.5-116.1 -63.5 145.9 -16.2 20.1 0.1 37 39 A K E + B 0 53A 132 16,-0.6 16,-2.6 -33,-0.1 2,-0.4 -0.714 51.4 162.6 -91.8 90.7 -13.7 17.5 -1.1 38 40 A I E - B 0 52A 18 -2,-1.3 -33,-2.2 14,-0.2 2,-0.4 -0.951 18.2-166.4-118.6 131.2 -10.5 19.3 -0.2 39 41 A F E -AB 4 51A 61 12,-2.7 12,-2.3 -2,-0.4 2,-0.4 -0.958 5.5-152.0-127.4 133.6 -7.2 17.4 0.1 40 42 A L E -AB 3 50A 0 -37,-3.3 -37,-2.7 -2,-0.4 2,-0.5 -0.902 2.3-160.5-113.6 132.0 -4.0 18.7 1.6 41 43 A T E - B 0 49A 40 8,-2.6 8,-2.7 -2,-0.4 2,-0.7 -0.961 15.7-142.2-108.3 120.9 -0.4 17.6 0.7 42 44 A I E - B 0 48A 78 -2,-0.5 6,-0.2 -41,-0.4 2,-0.2 -0.791 21.2-150.1 -82.1 114.4 2.3 18.4 3.3 43 45 A N > - 0 0 56 4,-2.8 3,-2.1 -2,-0.7 0, 0.0 -0.522 22.3-113.7 -85.3 154.5 5.4 19.4 1.4 44 46 A A T 3 S+ 0 0 116 1,-0.3 -1,-0.1 -2,-0.2 4,-0.0 0.810 115.5 57.5 -55.4 -36.5 8.9 18.8 2.7 45 47 A D T 3 S- 0 0 130 1,-0.1 -1,-0.3 2,-0.1 3,-0.1 0.401 122.5-103.8 -79.2 5.5 9.6 22.5 3.1 46 48 A G S < S+ 0 0 42 -3,-2.1 -2,-0.1 1,-0.4 -1,-0.1 0.204 82.0 128.6 91.2 -14.4 6.5 22.8 5.4 47 49 A S - 0 0 53 -5,-0.1 -4,-2.8 -26,-0.0 2,-0.4 -0.377 50.2-142.5 -66.3 154.0 4.3 24.4 2.8 48 50 A V E -B 42 0A 18 -28,-0.5 2,-0.6 -6,-0.2 -6,-0.2 -0.991 4.2-151.2-127.1 128.9 0.9 22.7 2.4 49 51 A Y E -B 41 0A 130 -8,-2.7 -8,-2.6 -2,-0.4 2,-0.4 -0.914 14.5-169.0-106.5 114.0 -0.8 22.3 -1.0 50 52 A A E +B 40 0A 43 -2,-0.6 2,-0.3 -10,-0.2 -10,-0.2 -0.878 8.7 173.1-105.4 135.3 -4.6 22.3 -0.8 51 53 A E E -B 39 0A 68 -12,-2.3 -12,-2.7 -2,-0.4 2,-0.4 -0.959 20.3-139.0-138.3 156.3 -6.8 21.3 -3.8 52 54 A E E -B 38 0A 64 -2,-0.3 2,-0.5 -14,-0.2 -14,-0.2 -0.926 3.7-157.7-116.3 139.9 -10.5 20.7 -4.3 53 55 A V E +B 37 0A 81 -16,-2.6 -16,-0.6 -2,-0.4 -2,-0.0 -0.977 29.5 157.7-112.2 125.9 -12.1 17.9 -6.3 54 56 A K - 0 0 106 -2,-0.5 4,-0.1 -18,-0.1 -2,-0.0 -0.993 44.1 -90.3-146.3 152.5 -15.7 18.8 -7.4 55 57 A P - 0 0 113 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.267 52.4-101.3 -56.5 149.9 -18.2 17.9 -10.0 56 58 A F S S+ 0 0 195 2,-0.1 2,-0.1 1,-0.0 0, 0.0 -0.987 102.4 41.2-118.1 129.8 -18.2 19.9 -13.3 57 59 A P 0 0 103 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 0.571 360.0 360.0 -77.5 165.6 -20.2 22.0 -13.8 58 60 A S 0 0 128 -2,-0.1 -2,-0.1 -4,-0.1 0, 0.0 0.712 360.0 360.0 -67.6 360.0 -20.3 23.7 -10.5