==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 16-SEP-10 3OVJ . COMPND 2 MOLECULE: KLVFFA HEXAPEPTIDE SEGMENT FROM AMYLOID BETA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.LANDAU,D.EISENBERG . 24 4 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2712.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 10 41.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 41.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 2 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 209 0, 0.0 2,-0.4 0, 0.0 12,-0.2 0.000 360.0 360.0 360.0 114.1 1.9 -14.7 -13.3 2 2 A L E +A 12 0A 65 10,-3.4 10,-2.5 2,-0.0 2,-0.4 -0.963 360.0 177.9-112.6 129.8 1.9 -11.1 -11.9 3 3 A V E +A 11 0A 88 -2,-0.4 2,-0.4 8,-0.2 8,-0.2 -0.999 8.1 176.6-127.9 126.5 1.8 -10.2 -8.2 4 4 A F E -A 10 0A 96 6,-2.7 6,-2.7 -2,-0.4 2,-0.5 -0.961 10.1-177.6-137.7 113.0 2.0 -6.4 -7.3 5 5 A F E A 9 0A 149 -2,-0.4 4,-0.2 4,-0.2 -2,-0.0 -0.964 360.0 360.0-108.7 127.0 1.7 -4.9 -3.8 6 6 A A 0 0 104 2,-2.6 -2,-0.0 -2,-0.5 0, 0.0 -0.912 360.0 360.0-131.2 360.0 1.9 -1.1 -3.6 7 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 1 B K 0 0 155 0, 0.0 -2,-2.6 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 128.9 -3.1 -2.0 -2.9 9 2 B L E -A 5 0A 114 -4,-0.2 2,-0.4 2,-0.0 -4,-0.2 -0.997 360.0-177.8-129.6 130.3 -2.8 -5.5 -4.3 10 3 B V E +A 4 0A 51 -6,-2.7 -6,-2.7 -2,-0.4 2,-0.4 -0.997 4.9 177.4-126.2 126.1 -3.0 -6.7 -7.9 11 4 B F E +A 3 0A 118 -2,-0.4 2,-0.3 -8,-0.2 -8,-0.2 -0.992 3.2 169.8-122.8 137.2 -2.8 -10.4 -8.9 12 5 B F E A 2 0A 110 -10,-2.5 -10,-3.4 -2,-0.4 -2,-0.0 -0.932 360.0 360.0-149.1 127.5 -3.1 -11.8 -12.5 13 6 B A 0 0 109 -2,-0.3 -2,-0.0 -12,-0.2 -10,-0.0 -0.991 360.0 360.0-146.6 360.0 -2.4 -15.3 -13.9 14 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 1 C K 0 0 181 0, 0.0 2,-0.4 0, 0.0 12,-0.2 0.000 360.0 360.0 360.0 118.4 -4.0 6.4 -16.2 16 2 C L E +B 26 0B 96 10,-3.3 10,-2.4 2,-0.0 2,-0.4 -0.949 360.0 177.9-112.5 130.1 -4.0 3.5 -18.7 17 3 C V E +B 25 0B 88 -2,-0.4 2,-0.4 8,-0.2 8,-0.2 -0.996 8.5 175.7-126.3 127.4 -4.0 -0.3 -17.9 18 4 C F E -B 24 0B 98 6,-2.7 6,-2.9 -2,-0.4 2,-0.5 -0.994 8.7-175.5-134.5 119.2 -4.2 -2.7 -20.8 19 5 C F E B 23 0B 76 -2,-0.4 4,-0.2 4,-0.2 -2,-0.0 -0.988 360.0 360.0-115.6 123.9 -3.9 -6.6 -20.5 20 6 C A 0 0 103 2,-2.5 -2,-0.0 -2,-0.5 0, 0.0 -0.931 360.0 360.0-128.1 360.0 -3.9 -8.6 -23.7 21 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 22 1 D K 0 0 181 0, 0.0 -2,-2.5 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 135.2 0.8 -8.7 -22.7 23 2 D L E -B 19 0B 91 -4,-0.2 2,-0.4 2,-0.0 -4,-0.2 -0.997 360.0-179.7-129.4 130.0 0.7 -5.9 -20.1 24 3 D V E +B 18 0B 61 -6,-2.9 -6,-2.7 -2,-0.4 2,-0.4 -0.998 4.4 175.5-129.4 125.5 0.8 -2.1 -20.8 25 4 D F E +B 17 0B 119 -2,-0.4 2,-0.3 -8,-0.2 -8,-0.2 -0.998 1.8 170.7-127.6 133.4 0.6 0.6 -18.0 26 5 D F E B 16 0B 145 -10,-2.4 -10,-3.3 -2,-0.4 -2,-0.0 -0.953 360.0 360.0-145.0 128.7 0.9 4.3 -18.4 27 6 D A 0 0 105 -2,-0.3 -2,-0.0 -12,-0.2 -10,-0.0 -0.994 360.0 360.0-142.3 360.0 0.4 7.1 -15.9