==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 30-APR-03 1P6R . COMPND 2 MOLECULE: PENICILLINASE REPRESSOR; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS LICHENIFORMIS; . AUTHOR H.V.MELCKEBEKE,C.VREULS,P.GANS,G.LLABRES,P.FILEE,B.JORIS, . 82 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5428.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 62 75.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 12.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 14.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 35.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 191 0, 0.0 2,-0.2 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 172.1 6.6 9.8 9.5 2 2 A K + 0 0 133 53,-0.1 2,-0.3 54,-0.0 53,-0.3 -0.410 360.0 156.4 -62.4 126.6 4.4 11.5 6.8 3 3 A K - 0 0 110 51,-2.8 3,-0.0 -2,-0.2 51,-0.0 -0.947 54.5 -88.6-144.0 151.3 6.6 12.0 3.6 4 4 A I - 0 0 40 -2,-0.3 2,-0.5 1,-0.1 78,-0.1 -0.492 64.5 -91.3 -63.4 136.6 5.4 12.4 -0.0 5 5 A P - 0 0 4 0, 0.0 2,-1.8 0, 0.0 -1,-0.1 -0.355 34.1-158.7 -60.2 113.3 5.3 8.8 -1.3 6 6 A Q - 0 0 45 -2,-0.5 2,-0.3 73,-0.1 73,-0.0 -0.638 33.7-178.4 -88.6 75.8 8.7 8.0 -2.8 7 7 A I - 0 0 2 -2,-1.8 2,-0.3 4,-0.0 72,-0.1 -0.667 26.4-155.6 -91.4 135.9 7.1 5.2 -4.8 8 8 A S >> - 0 0 53 -2,-0.3 4,-2.8 1,-0.1 3,-0.9 -0.710 38.9-105.0 -97.0 157.8 8.6 2.6 -7.2 9 9 A D H 3> S+ 0 0 104 1,-0.3 4,-2.3 -2,-0.3 5,-0.1 0.885 122.4 58.6 -50.7 -42.5 6.4 1.1 -9.9 10 10 A A H 3> S+ 0 0 34 1,-0.2 4,-0.8 2,-0.2 -1,-0.3 0.881 111.3 40.6 -56.3 -41.1 6.3 -2.2 -7.9 11 11 A E H X> S+ 0 0 4 -3,-0.9 4,-2.2 2,-0.2 3,-0.9 0.911 108.1 62.3 -71.4 -43.9 4.8 -0.3 -5.0 12 12 A L H 3X S+ 0 0 24 -4,-2.8 4,-3.2 1,-0.3 -2,-0.2 0.859 95.9 61.2 -50.4 -40.0 2.6 1.7 -7.4 13 13 A E H 3X S+ 0 0 59 -4,-2.3 4,-2.7 1,-0.2 -1,-0.3 0.923 106.7 44.4 -52.0 -47.2 0.9 -1.6 -8.4 14 14 A V H < S+ 0 0 26 -4,-2.7 3,-1.7 -5,-0.2 4,-0.4 0.967 114.6 48.3 -56.8 -55.1 -4.9 -2.1 -6.5 18 18 A I H >< S+ 0 0 2 -4,-3.1 3,-2.3 1,-0.3 -2,-0.2 0.890 102.9 61.4 -55.3 -46.6 -5.7 -0.6 -3.1 19 19 A W H 3< S+ 0 0 52 -4,-3.1 -1,-0.3 1,-0.3 -2,-0.2 0.679 95.7 62.2 -58.2 -19.3 -7.3 2.6 -4.6 20 20 A K T << S+ 0 0 170 -3,-1.7 -1,-0.3 -4,-0.7 2,-0.2 0.699 101.8 63.9 -75.7 -19.9 -9.9 0.4 -6.3 21 21 A H S < S- 0 0 61 -3,-2.3 3,-0.2 -4,-0.4 0, 0.0 -0.600 86.4-124.8-101.4 160.9 -11.2 -0.7 -2.9 22 22 A S S S- 0 0 118 1,-0.4 2,-0.3 -2,-0.2 -1,-0.1 0.977 94.0 -40.1 -67.9 -60.2 -12.7 1.3 -0.0 23 23 A S S S- 0 0 35 46,-0.1 -1,-0.4 -3,-0.1 2,-0.3 -0.803 70.1-140.2-132.6-161.2 -10.0 -0.1 2.1 24 24 A I E -A 68 0A 21 44,-0.7 44,-2.8 -2,-0.3 2,-0.2 -0.974 9.7-125.9-154.6 151.6 -8.6 -3.7 2.0 25 25 A N E > -A 67 0A 39 -2,-0.3 4,-2.8 42,-0.3 42,-0.2 -0.666 31.9-106.0 -95.7 156.9 -7.4 -6.2 4.7 26 26 A T H > S+ 0 0 12 40,-0.8 4,-3.1 -2,-0.2 5,-0.3 0.852 116.0 51.0 -46.2 -53.1 -3.9 -7.9 4.8 27 27 A N H > S+ 0 0 80 1,-0.2 4,-2.9 2,-0.2 -1,-0.2 0.968 115.3 42.0 -55.6 -56.3 -5.1 -11.4 3.7 28 28 A E H > S+ 0 0 88 2,-0.2 4,-3.1 1,-0.2 5,-0.2 0.882 115.1 52.4 -55.2 -43.0 -7.0 -10.0 0.7 29 29 A V H X S+ 0 0 1 -4,-2.8 4,-3.0 2,-0.2 5,-0.3 0.968 112.2 43.5 -60.1 -54.6 -4.1 -7.6 -0.1 30 30 A I H X S+ 0 0 35 -4,-3.1 4,-3.1 2,-0.2 5,-0.2 0.932 117.0 47.6 -56.7 -49.3 -1.5 -10.4 -0.1 31 31 A K H X S+ 0 0 113 -4,-2.9 4,-2.8 -5,-0.3 5,-0.2 0.961 113.9 46.5 -56.3 -55.7 -3.8 -12.7 -2.1 32 32 A E H X S+ 0 0 69 -4,-3.1 4,-2.6 2,-0.2 5,-0.2 0.926 116.6 43.5 -53.8 -53.4 -4.6 -10.1 -4.7 33 33 A L H X S+ 0 0 0 -4,-3.0 4,-3.2 -5,-0.2 -1,-0.2 0.949 113.0 52.2 -62.2 -45.5 -1.0 -8.9 -5.1 34 34 A S H < S+ 0 0 34 -4,-3.1 -2,-0.2 -5,-0.3 -1,-0.2 0.897 112.6 46.4 -55.7 -43.2 0.2 -12.6 -5.2 35 35 A K H < S+ 0 0 157 -4,-2.8 3,-0.3 -5,-0.2 -1,-0.2 0.934 118.8 39.5 -64.1 -48.7 -2.4 -13.4 -7.9 36 36 A T H < S+ 0 0 76 -4,-2.6 2,-0.3 1,-0.3 -2,-0.2 0.806 138.0 11.2 -73.7 -34.5 -1.6 -10.3 -10.0 37 37 A S S < S- 0 0 30 -4,-3.2 2,-2.5 -5,-0.2 -1,-0.3 -0.831 79.0-133.7-147.1 107.5 2.2 -10.4 -9.5 38 38 A T + 0 0 132 -2,-0.3 2,-0.2 -3,-0.3 -4,-0.2 -0.346 49.0 149.8 -68.2 71.0 3.7 -13.6 -7.9 39 39 A W - 0 0 76 -2,-2.5 -2,-0.1 -6,-0.1 5,-0.1 -0.676 55.4 -93.9 -96.3 155.9 6.0 -11.9 -5.3 40 40 A S >> - 0 0 76 -2,-0.2 3,-1.8 1,-0.1 4,-1.1 -0.458 36.0-113.8 -65.6 145.2 6.8 -13.5 -2.0 41 41 A P H 3> S+ 0 0 69 0, 0.0 4,-2.8 0, 0.0 5,-0.2 0.840 118.2 65.5 -46.0 -38.7 4.5 -12.3 0.9 42 42 A K H 3> S+ 0 0 145 1,-0.2 4,-2.7 2,-0.2 5,-0.1 0.866 96.7 55.7 -51.6 -41.1 7.6 -10.6 2.4 43 43 A T H <> S+ 0 0 43 -3,-1.8 4,-2.7 2,-0.2 -1,-0.2 0.949 108.8 45.9 -57.0 -50.7 7.6 -8.3 -0.7 44 44 A I H X S+ 0 0 2 -4,-1.1 4,-3.1 1,-0.2 5,-0.2 0.938 111.9 51.2 -60.4 -48.5 4.0 -7.3 0.1 45 45 A Q H X S+ 0 0 78 -4,-2.8 4,-3.0 1,-0.2 -1,-0.2 0.899 110.9 49.4 -55.5 -42.8 4.8 -6.8 3.8 46 46 A T H X S+ 0 0 61 -4,-2.7 4,-2.8 2,-0.2 -2,-0.2 0.944 112.1 47.1 -62.2 -50.3 7.8 -4.6 2.7 47 47 A M H X S+ 0 0 16 -4,-2.7 4,-2.5 2,-0.2 5,-0.2 0.951 114.9 46.3 -55.9 -52.2 5.6 -2.5 0.3 48 48 A L H X S+ 0 0 1 -4,-3.1 4,-2.7 1,-0.2 -2,-0.2 0.950 112.0 51.4 -54.5 -52.0 3.0 -2.1 3.0 49 49 A L H X S+ 0 0 96 -4,-3.0 4,-3.2 -5,-0.2 -2,-0.2 0.899 110.2 49.6 -53.8 -46.9 5.6 -1.2 5.6 50 50 A R H X S+ 0 0 100 -4,-2.8 4,-2.8 1,-0.2 6,-0.2 0.976 112.8 45.7 -54.3 -61.6 7.1 1.5 3.2 51 51 A L H <>S+ 0 0 0 -4,-2.5 5,-2.9 1,-0.2 6,-1.7 0.826 116.5 46.6 -53.2 -37.8 3.7 3.1 2.6 52 52 A I H ><5S+ 0 0 46 -4,-2.7 3,-2.2 -5,-0.2 -2,-0.2 0.970 112.4 48.7 -68.3 -53.6 2.9 3.0 6.3 53 53 A K H 3<5S+ 0 0 131 -4,-3.2 -2,-0.2 1,-0.3 -3,-0.2 0.864 112.4 48.9 -53.4 -43.7 6.3 4.4 7.4 54 54 A K T 3<5S- 0 0 17 -4,-2.8 -51,-2.8 -5,-0.2 -1,-0.3 0.408 114.6-117.4 -76.6 -1.8 5.9 7.2 4.8 55 55 A G T < 5S+ 0 0 15 -3,-2.2 -3,-0.2 -53,-0.3 3,-0.2 0.816 81.8 124.0 64.9 29.4 2.4 8.0 6.1 56 56 A A S -B 65 0A 136 3,-1.7 2,-2.1 -2,-1.1 3,-1.7 -0.547 56.4 -87.1 -86.2 77.2 -8.7 -5.6 12.8 63 63 A G T 3 S+ 0 0 82 -2,-1.9 -1,-0.1 1,-0.3 3,-0.1 -0.356 116.4 7.4 59.8 -77.0 -7.7 -8.1 15.4 64 64 A R T 3 S+ 0 0 238 -2,-2.1 -1,-0.3 1,-0.1 2,-0.3 0.788 131.1 45.6-100.9 -43.7 -5.5 -10.4 13.2 65 65 A V E < S- B 0 62A 44 -3,-1.7 -3,-1.7 -39,-0.0 2,-0.5 -0.722 76.4-131.3-104.4 155.3 -5.4 -8.5 9.9 66 66 A F E - B 0 61A 49 -2,-0.3 -40,-0.8 -5,-0.3 2,-0.4 -0.942 15.9-140.6-113.4 125.3 -4.7 -4.7 9.4 67 67 A V E -AB 25 60A 31 -7,-3.0 -7,-2.2 -2,-0.5 2,-0.6 -0.748 16.2-136.1 -85.9 129.6 -7.1 -2.8 7.1 68 68 A Y E -AB 24 59A 0 -44,-2.8 -44,-0.7 -2,-0.4 -9,-0.2 -0.822 17.1-171.7 -97.9 120.5 -5.3 -0.1 4.9 69 69 A T E - B 0 58A 32 -11,-2.9 -11,-2.6 -2,-0.6 2,-0.2 -0.939 29.8-123.7-106.7 109.0 -6.9 3.3 4.5 70 70 A P E - B 0 57A 38 0, 0.0 -13,-0.2 0, 0.0 -14,-0.1 -0.375 22.0-170.7 -56.1 122.3 -5.1 5.4 1.8 71 71 A N S S+ 0 0 83 -15,-2.6 2,-0.3 -2,-0.2 -14,-0.2 0.729 77.0 50.2 -81.2 -28.2 -3.9 8.7 3.3 72 72 A I + 0 0 10 -16,-1.1 -1,-0.0 1,-0.1 -16,-0.0 -0.875 52.7 127.7-112.1 143.4 -3.0 9.8 -0.2 73 73 A D S S+ 0 0 88 -2,-0.3 3,-0.2 -3,-0.0 -1,-0.1 0.186 76.9 51.8-156.3 -55.4 -5.3 9.8 -3.3 74 74 A E S S+ 0 0 157 1,-0.3 2,-2.6 2,-0.1 -2,-0.1 0.931 102.6 64.0 -57.0 -51.0 -5.3 13.3 -4.8 75 75 A S S > S- 0 0 44 1,-0.1 2,-1.9 3,-0.0 3,-0.5 -0.403 81.5-171.6 -73.0 62.6 -1.4 13.2 -4.8 76 76 A D T 3 - 0 0 101 -2,-2.6 -1,-0.1 1,-0.2 -2,-0.1 -0.429 64.9 -40.8 -68.3 81.4 -1.5 10.3 -7.3 77 77 A Y T 3 S+ 0 0 81 -2,-1.9 2,-0.5 1,-0.2 -1,-0.2 0.990 78.4 164.4 62.7 75.5 2.2 9.4 -7.3 78 78 A I < - 0 0 97 -3,-0.5 2,-1.1 -73,-0.1 -1,-0.2 -0.876 21.2-160.3-123.1 94.9 4.2 12.7 -7.2 79 79 A E + 0 0 100 -2,-0.5 2,-0.3 -72,-0.1 -73,-0.1 -0.677 26.6 156.3 -81.7 99.1 7.8 12.2 -6.3 80 80 A V - 0 0 78 -2,-1.1 2,-2.5 -75,-0.0 -76,-0.1 -0.825 62.0 -88.5-114.6 150.7 9.1 15.6 -5.1 81 81 A K 0 0 200 -2,-0.3 -2,-0.1 -75,-0.0 -75,-0.0 -0.433 360.0 360.0 -64.8 76.0 12.1 15.9 -2.7 82 82 A S 0 0 85 -2,-2.5 -79,-0.1 -78,-0.1 -76,-0.0 -0.721 360.0 360.0-163.9 360.0 9.9 15.7 0.4