==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 01-MAY-03 1P7E . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR T.S.ULMER,B.E.RAMIREZ,F.DELAGLIO,A.BAX . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3907.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 122 0, 0.0 19,-2.2 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 146.4 -1.0 -13.6 -4.1 2 2 A Q E -A 19 0A 134 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.798 360.0-166.0 -90.5 125.6 -2.7 -11.5 -1.4 3 3 A Y E -A 18 0A 16 15,-3.1 15,-2.2 -2,-0.6 2,-0.4 -0.816 5.8-146.2-110.4 151.5 -0.8 -8.4 -0.7 4 4 A K E -Ab 17 51A 78 46,-2.0 48,-3.0 -2,-0.3 2,-0.5 -0.914 3.7-155.7-119.5 145.6 -1.3 -6.1 2.4 5 5 A L E -Ab 16 52A 0 11,-2.9 11,-2.1 -2,-0.4 2,-0.5 -0.984 4.6-162.2-121.1 125.7 -1.1 -2.4 2.7 6 6 A V E -Ab 15 53A 29 46,-2.5 48,-2.3 -2,-0.5 2,-0.6 -0.930 11.8-157.7-107.3 120.8 -0.4 -0.9 6.2 7 7 A I E +Ab 14 54A 4 7,-2.7 7,-2.0 -2,-0.5 2,-0.6 -0.918 18.8 177.0-109.8 115.4 -1.3 2.8 6.2 8 8 A N E +Ab 13 55A 77 46,-3.0 48,-2.0 -2,-0.6 5,-0.2 -0.678 27.7 159.3-112.5 69.8 0.2 5.0 8.8 9 9 A G - 0 0 5 3,-1.9 30,-0.1 -2,-0.6 -2,-0.0 -0.389 54.0-111.2 -89.4 170.4 -1.2 8.3 7.8 10 10 A K S S+ 0 0 167 -2,-0.1 3,-0.1 1,-0.1 -1,-0.1 0.851 115.4 4.4 -64.6 -41.3 -1.7 11.6 9.7 11 11 A T S S+ 0 0 142 1,-0.2 2,-0.5 0, 0.0 -1,-0.1 0.642 127.7 60.4-119.6 -30.3 -5.4 11.2 9.7 12 12 A L + 0 0 62 25,-0.1 -3,-1.9 2,-0.0 2,-0.3 -0.901 60.7 166.7-108.4 125.5 -6.1 7.8 8.1 13 13 A K E +A 8 0A 152 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -1.000 26.2 69.4-139.2 138.3 -4.6 4.7 9.7 14 14 A G E -A 7 0A 36 -7,-2.0 -7,-2.7 -2,-0.3 2,-0.3 -0.996 66.4 -74.9 160.7-150.2 -5.3 1.0 9.3 15 15 A E E +A 6 0A 124 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.987 31.5 175.1-145.7 153.6 -4.8 -1.8 6.8 16 16 A T E -A 5 0A 45 -11,-2.1 -11,-2.9 -2,-0.3 2,-0.3 -0.889 15.4-143.5-148.7 170.3 -6.3 -3.0 3.5 17 17 A T E -A 4 0A 88 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.944 10.7-173.5-138.0 164.3 -5.5 -5.8 1.0 18 18 A T E -A 3 0A 40 -15,-2.2 -15,-3.1 -2,-0.3 2,-0.4 -0.980 21.2-129.3-153.2 154.3 -5.5 -6.5 -2.7 19 19 A K E +A 2 0A 154 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.911 36.4 157.6-108.4 136.2 -4.9 -9.6 -4.8 20 20 A A - 0 0 16 -19,-2.2 3,-0.1 -2,-0.4 -2,-0.0 -0.988 49.0-123.9-153.5 160.0 -2.4 -9.5 -7.7 21 21 A V S S+ 0 0 130 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.751 95.5 7.9 -77.3 -24.4 -0.3 -11.7 -9.9 22 22 A D S > S- 0 0 62 -21,-0.1 4,-1.6 1,-0.1 5,-0.1 -0.947 77.6-104.5-151.2 168.2 2.9 -9.9 -9.0 23 23 A A H > S+ 0 0 31 -2,-0.3 4,-2.6 1,-0.2 5,-0.1 0.839 114.6 56.8 -66.7 -36.3 4.2 -7.1 -6.7 24 24 A E H > S+ 0 0 121 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.898 107.5 49.0 -66.7 -35.1 4.5 -4.4 -9.3 25 25 A T H > S+ 0 0 64 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.906 112.1 48.7 -68.7 -38.9 0.8 -4.8 -10.2 26 26 A A H X S+ 0 0 0 -4,-1.6 4,-2.7 1,-0.2 5,-0.2 0.910 107.9 55.4 -66.2 -40.8 -0.1 -4.6 -6.5 27 27 A E H X S+ 0 0 80 -4,-2.6 4,-2.9 1,-0.2 5,-0.2 0.916 106.5 50.0 -58.4 -45.3 2.0 -1.5 -6.1 28 28 A K H X S+ 0 0 129 -4,-1.9 4,-2.1 1,-0.2 -1,-0.2 0.918 111.8 48.2 -61.2 -42.7 0.1 0.3 -8.9 29 29 A A H X S+ 0 0 44 -4,-1.8 4,-2.2 1,-0.2 -2,-0.2 0.912 114.8 45.2 -63.6 -43.5 -3.2 -0.6 -7.2 30 30 A F H X S+ 0 0 6 -4,-2.7 4,-2.7 2,-0.2 -2,-0.2 0.870 110.5 52.9 -70.7 -35.9 -2.0 0.6 -3.8 31 31 A K H X S+ 0 0 75 -4,-2.9 4,-2.4 -5,-0.2 -1,-0.2 0.901 111.6 47.3 -66.8 -35.7 -0.4 3.8 -5.2 32 32 A Q H X S+ 0 0 103 -4,-2.1 4,-2.8 -5,-0.2 -2,-0.2 0.928 111.6 50.8 -67.4 -43.9 -3.8 4.6 -6.9 33 33 A Y H X S+ 0 0 70 -4,-2.2 4,-1.4 2,-0.2 -2,-0.2 0.918 111.2 48.0 -58.7 -46.5 -5.6 3.8 -3.6 34 34 A A H <>S+ 0 0 2 -4,-2.7 5,-2.7 2,-0.2 3,-0.3 0.933 112.3 48.3 -62.4 -46.2 -3.3 6.1 -1.7 35 35 A N H ><5S+ 0 0 111 -4,-2.4 3,-1.6 1,-0.2 -2,-0.2 0.920 109.3 52.9 -61.2 -44.0 -3.7 8.9 -4.2 36 36 A D H 3<5S+ 0 0 116 -4,-2.8 -1,-0.2 1,-0.3 -2,-0.2 0.794 113.2 45.0 -61.5 -28.6 -7.5 8.5 -4.1 37 37 A N T 3<5S- 0 0 84 -4,-1.4 -1,-0.3 -3,-0.3 -2,-0.2 0.292 116.6-112.2-100.8 11.1 -7.4 8.8 -0.3 38 38 A G T < 5 + 0 0 59 -3,-1.6 2,-0.5 -4,-0.2 -3,-0.2 0.698 63.0 151.1 70.4 22.0 -5.0 11.8 -0.2 39 39 A V < + 0 0 12 -5,-2.7 2,-0.4 -6,-0.2 -1,-0.2 -0.765 18.6 176.9 -91.7 127.1 -2.1 9.9 1.3 40 40 A D + 0 0 139 -2,-0.5 2,-0.2 14,-0.0 14,-0.0 -0.866 30.4 122.1-129.9 91.5 1.4 11.2 0.4 41 41 A G - 0 0 20 -2,-0.4 2,-0.3 15,-0.1 15,-0.2 -0.637 61.5 -80.0-135.4-165.3 4.1 9.3 2.2 42 42 A V E -C 55 0A 103 13,-2.0 13,-1.9 -2,-0.2 2,-0.4 -0.796 45.1-140.8-105.4 146.8 7.2 7.2 1.8 43 43 A W E -C 54 0A 69 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.893 19.4-179.5-114.6 148.0 6.9 3.5 0.9 44 44 A T E -C 53 0A 90 9,-1.9 9,-1.9 -2,-0.4 2,-0.4 -0.905 9.9-158.5-131.6 161.2 8.5 0.2 1.8 45 45 A Y E -C 52 0A 74 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.991 2.0-161.3-140.6 130.6 7.9 -3.3 0.6 46 46 A D E >>> -C 51 0A 79 5,-2.2 5,-1.5 -2,-0.4 4,-1.0 -0.954 2.3-164.8-116.1 109.3 8.8 -6.5 2.5 47 47 A D T 345S+ 0 0 94 -2,-0.6 -1,-0.1 1,-0.2 5,-0.1 0.741 85.1 63.7 -65.2 -26.1 8.9 -9.5 0.2 48 48 A A T 345S+ 0 0 90 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.840 119.2 23.0 -68.5 -34.3 8.9 -11.9 3.1 49 49 A T T <45S- 0 0 85 -3,-0.6 -1,-0.2 2,-0.2 -2,-0.2 0.343 100.3-127.3-112.6 3.1 5.5 -10.8 4.4 50 50 A K T <5 + 0 0 55 -4,-1.0 -46,-2.0 1,-0.2 2,-0.4 0.893 62.6 142.5 50.6 42.9 4.2 -9.4 1.1 51 51 A T E < -bC 4 46A 23 -5,-1.5 -5,-2.2 -48,-0.2 2,-0.3 -0.970 39.7-161.1-122.2 132.4 3.4 -6.2 2.9 52 52 A F E -bC 5 45A 6 -48,-3.0 -46,-2.5 -2,-0.4 2,-0.4 -0.795 10.7-161.8-103.2 147.0 3.7 -2.6 1.8 53 53 A T E -bC 6 44A 40 -9,-1.9 -9,-1.9 -2,-0.3 2,-0.4 -0.998 5.0-168.4-131.6 137.7 3.8 0.2 4.3 54 54 A V E -bC 7 43A 1 -48,-2.3 -46,-3.0 -2,-0.4 2,-0.4 -0.989 6.5-173.0-127.2 129.9 3.1 3.9 3.7 55 55 A T E bC 8 42A 60 -13,-1.9 -13,-2.0 -2,-0.4 -46,-0.2 -0.981 360.0 360.0-127.1 134.2 3.9 6.6 6.2 56 56 A E 0 0 89 -48,-2.0 -15,-0.1 -2,-0.4 -14,-0.1 -0.144 360.0 360.0 -94.8 360.0 3.1 10.3 6.2