==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER IMMUNE SYSTEM 01-MAY-03 1P7F . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. 'GROUP G'; . AUTHOR T.S.ULMER,B.E.RAMIREZ,F.DELAGLIO,A.BAX . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3892.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 107 0, 0.0 19,-2.2 0, 0.0 2,-0.6 0.000 360.0 360.0 360.0 147.0 -1.4 -14.0 -2.4 2 2 A Q E -A 19 0A 113 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.795 360.0-166.1 -90.6 125.4 -2.9 -11.5 0.0 3 3 A Y E -A 18 0A 15 15,-3.2 15,-2.2 -2,-0.6 2,-0.4 -0.816 5.9-146.4-110.1 151.3 -1.0 -8.3 0.3 4 4 A K E -Ab 17 51A 80 46,-2.0 48,-2.8 -2,-0.3 2,-0.5 -0.916 3.9-156.2-119.8 145.0 -1.4 -5.7 3.0 5 5 A L E -Ab 16 52A 0 11,-2.9 11,-2.1 -2,-0.4 2,-0.5 -0.984 4.3-162.4-121.0 125.6 -1.0 -2.0 2.9 6 6 A V E -Ab 15 53A 26 46,-2.7 48,-2.2 -2,-0.5 2,-0.6 -0.931 12.0-157.6-107.2 121.1 -0.2 -0.1 6.2 7 7 A I E +Ab 14 54A 4 7,-2.8 7,-2.0 -2,-0.5 2,-0.6 -0.918 19.1 176.3-110.2 116.1 -1.0 3.6 5.8 8 8 A N E +Ab 13 55A 78 46,-3.1 48,-1.8 -2,-0.6 5,-0.2 -0.684 27.6 158.6-113.3 70.4 0.7 6.1 8.0 9 9 A G - 0 0 5 3,-1.9 30,-0.1 -2,-0.6 -2,-0.0 -0.400 54.2-111.5 -90.9 171.2 -0.7 9.3 6.6 10 10 A K S S+ 0 0 167 -2,-0.1 3,-0.1 1,-0.1 -1,-0.1 0.851 115.2 4.9 -65.3 -41.4 -1.1 12.8 8.1 11 11 A T S S+ 0 0 143 1,-0.2 2,-0.5 0, 0.0 -1,-0.1 0.650 127.6 59.5-119.2 -30.7 -4.8 12.5 8.2 12 12 A L + 0 0 58 25,-0.1 -3,-1.9 2,-0.0 2,-0.4 -0.902 61.4 167.4-107.8 125.6 -5.6 8.9 7.1 13 13 A K E +A 8 0A 150 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -1.000 26.3 68.6-139.6 138.4 -4.2 6.0 9.1 14 14 A G E -A 7 0A 37 -7,-2.0 -7,-2.8 -2,-0.4 2,-0.3 -0.996 66.9 -75.1 160.0-150.5 -4.9 2.3 9.2 15 15 A E E +A 6 0A 122 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.987 31.7 174.7-145.4 153.7 -4.6 -0.8 7.1 16 16 A T E -A 5 0A 45 -11,-2.1 -11,-2.9 -2,-0.3 2,-0.3 -0.886 15.7-143.1-149.1 170.6 -6.2 -2.4 4.0 17 17 A T E -A 4 0A 89 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.945 10.7-173.2-138.2 164.3 -5.6 -5.4 1.9 18 18 A T E -A 3 0A 39 -15,-2.2 -15,-3.2 -2,-0.3 2,-0.4 -0.979 21.1-129.4-153.3 153.9 -5.7 -6.6 -1.7 19 19 A K E +A 2 0A 149 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.911 36.4 157.4-107.9 136.1 -5.3 -9.9 -3.5 20 20 A A - 0 0 13 -19,-2.2 3,-0.1 -2,-0.4 -2,-0.0 -0.988 48.9-123.6-153.8 159.9 -2.9 -10.2 -6.5 21 21 A V S S+ 0 0 132 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.755 95.4 8.0 -77.7 -23.5 -0.9 -12.8 -8.4 22 22 A D S > S- 0 0 61 -21,-0.1 4,-1.6 1,-0.1 5,-0.1 -0.945 78.2-103.9-150.7 168.7 2.4 -10.9 -7.9 23 23 A A H > S+ 0 0 31 -2,-0.3 4,-2.7 1,-0.2 5,-0.1 0.836 114.9 57.1 -66.4 -36.0 3.8 -7.9 -6.0 24 24 A E H > S+ 0 0 121 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.899 107.2 49.0 -66.7 -34.8 3.9 -5.5 -9.0 25 25 A T H > S+ 0 0 63 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.906 112.3 48.5 -68.7 -38.9 0.2 -6.0 -9.6 26 26 A A H X S+ 0 0 0 -4,-1.6 4,-2.6 1,-0.2 5,-0.2 0.911 108.2 55.1 -66.4 -40.8 -0.5 -5.3 -5.9 27 27 A E H X S+ 0 0 83 -4,-2.7 4,-2.8 1,-0.2 5,-0.2 0.915 106.8 50.0 -57.8 -46.1 1.8 -2.2 -6.0 28 28 A K H X S+ 0 0 129 -4,-2.0 4,-2.0 1,-0.2 -1,-0.2 0.914 111.6 48.7 -60.6 -43.1 -0.3 -0.8 -8.9 29 29 A A H X S+ 0 0 44 -4,-1.8 4,-2.1 1,-0.2 -1,-0.2 0.911 114.3 45.2 -63.6 -43.7 -3.5 -1.4 -7.0 30 30 A F H X S+ 0 0 6 -4,-2.6 4,-2.6 2,-0.2 -2,-0.2 0.866 110.3 53.2 -70.9 -35.7 -2.2 0.2 -3.8 31 31 A K H X S+ 0 0 78 -4,-2.8 4,-2.3 -5,-0.2 -1,-0.2 0.897 111.1 47.8 -66.7 -35.8 -0.7 3.2 -5.7 32 32 A Q H X S+ 0 0 101 -4,-2.0 4,-2.7 -5,-0.2 -2,-0.2 0.925 111.0 51.4 -66.8 -44.1 -4.1 3.9 -7.3 33 33 A Y H X S+ 0 0 71 -4,-2.1 4,-1.4 1,-0.2 -2,-0.2 0.916 110.6 48.2 -58.2 -46.5 -5.7 3.5 -3.9 34 34 A A H <>S+ 0 0 4 -4,-2.6 5,-2.6 1,-0.2 3,-0.3 0.932 112.3 48.3 -62.7 -45.7 -3.3 6.1 -2.4 35 35 A N H ><5S+ 0 0 114 -4,-2.3 3,-1.6 1,-0.2 -2,-0.2 0.918 109.0 53.6 -60.5 -45.1 -3.8 8.5 -5.2 36 36 A D H 3<5S+ 0 0 116 -4,-2.7 -1,-0.2 1,-0.3 -2,-0.2 0.792 113.1 44.6 -60.3 -29.7 -7.6 8.2 -5.0 37 37 A N T 3<5S- 0 0 87 -4,-1.4 -1,-0.3 -3,-0.3 -2,-0.2 0.298 116.3-111.5-101.1 10.8 -7.4 9.0 -1.3 38 38 A G T < 5 + 0 0 61 -3,-1.6 2,-0.5 -4,-0.3 -3,-0.2 0.691 63.8 150.2 72.2 19.9 -5.0 11.9 -1.6 39 39 A V < + 0 0 11 -5,-2.6 2,-0.4 -6,-0.2 -1,-0.2 -0.762 18.9 176.7 -91.7 127.5 -2.0 10.2 0.1 40 40 A D + 0 0 139 -2,-0.5 2,-0.2 14,-0.0 -5,-0.0 -0.858 30.2 121.1-130.5 91.3 1.4 11.3 -1.2 41 41 A G - 0 0 18 -2,-0.4 2,-0.3 15,-0.2 15,-0.3 -0.638 61.4 -78.0-135.6-165.0 4.2 9.6 0.8 42 42 A V E -C 55 0A 108 13,-2.4 13,-2.3 -2,-0.2 2,-0.4 -0.793 44.4-142.6-105.6 145.5 7.2 7.4 0.6 43 43 A W E -C 54 0A 68 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.894 18.3-178.8-114.2 147.3 6.9 3.6 0.2 44 44 A T E -C 53 0A 90 9,-2.1 9,-2.1 -2,-0.4 2,-0.4 -0.908 9.5-159.0-131.4 160.5 8.6 0.5 1.4 45 45 A Y E -C 52 0A 75 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.991 2.1-162.0-140.6 130.3 7.9 -3.2 0.7 46 46 A D E >>> -C 51 0A 82 5,-2.2 5,-1.4 -2,-0.4 4,-0.9 -0.959 3.1-164.0-116.3 109.9 8.9 -6.1 2.8 47 47 A D T 345S+ 0 0 94 -2,-0.6 -1,-0.1 1,-0.2 5,-0.1 0.740 85.0 63.7 -66.2 -25.1 8.8 -9.3 0.9 48 48 A A T 345S+ 0 0 89 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.829 117.9 24.8 -68.9 -33.7 9.0 -11.5 4.1 49 49 A T T <45S- 0 0 86 -3,-0.6 -1,-0.2 2,-0.2 -2,-0.2 0.359 100.1-127.1-111.7 2.1 5.7 -10.2 5.5 50 50 A K T <5 + 0 0 60 -4,-0.9 -46,-2.0 1,-0.2 2,-0.4 0.889 63.6 140.8 52.2 40.8 4.1 -9.2 2.1 51 51 A T E < -bC 4 46A 24 -5,-1.4 -5,-2.2 -48,-0.2 2,-0.3 -0.971 40.1-162.0-122.6 131.8 3.4 -5.8 3.6 52 52 A F E -bC 5 45A 5 -48,-2.8 -46,-2.7 -2,-0.4 2,-0.4 -0.806 10.6-162.7-103.8 146.2 3.7 -2.3 1.9 53 53 A T E -bC 6 44A 41 -9,-2.1 -9,-2.1 -2,-0.3 2,-0.4 -0.998 4.9-169.2-131.8 137.9 4.0 0.8 4.1 54 54 A V E -bC 7 43A 2 -48,-2.2 -46,-3.1 -2,-0.4 2,-0.4 -0.991 5.9-174.0-128.4 129.8 3.3 4.3 3.0 55 55 A T E bC 8 42A 62 -13,-2.3 -13,-2.4 -2,-0.4 -46,-0.2 -0.980 360.0 360.0-127.5 135.7 4.2 7.3 5.1 56 56 A E 0 0 96 -48,-1.8 -15,-0.2 -2,-0.4 -2,-0.0 -0.857 360.0 360.0 -97.2 360.0 3.5 11.0 4.6