==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CHAPERONE 07-MAY-03 1P8G . COMPND 2 MOLECULE: SIMILAR TO MERCURIC TRANSPORT PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR L.BANCI,I.BERTINI,R.DEL CONTE . 73 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4814.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 76.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 21.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 13 17.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 13.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 21.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 150 0, 0.0 2,-0.4 0, 0.0 46,-0.2 0.000 360.0 360.0 360.0 75.6 6.9 -11.3 1.0 2 2 A E E -A 46 0A 80 44,-2.4 44,-1.6 2,-0.0 2,-1.1 -0.958 360.0-146.2-133.2 114.1 4.4 -10.6 -1.8 3 3 A Q E +A 45 0A 145 -2,-0.4 42,-0.3 42,-0.3 2,-0.2 -0.651 43.7 155.1 -78.6 91.2 4.8 -8.1 -4.7 4 4 A K E -A 44 0A 17 40,-2.8 40,-2.5 -2,-1.1 2,-0.5 -0.588 45.8-116.8-117.8 175.4 1.2 -6.8 -5.2 5 5 A T E -A 43 0A 9 67,-0.5 66,-2.9 66,-0.3 2,-2.2 -0.901 13.2-158.6-118.8 102.3 -0.7 -3.8 -6.5 6 6 A L E -C 70 0B 2 36,-0.8 64,-0.3 -2,-0.5 62,-0.2 -0.514 32.0-132.7 -76.5 74.6 -2.9 -2.0 -3.9 7 7 A Q E -C 69 0B 52 -2,-2.2 61,-1.8 62,-1.7 62,-0.9 -0.004 25.0-154.1 -34.4 110.5 -5.1 -0.5 -6.7 8 8 A V - 0 0 6 59,-0.3 2,-0.5 60,-0.2 59,-0.2 -0.800 10.6-145.6 -96.3 137.3 -5.3 3.2 -5.7 9 9 A E - 0 0 117 -2,-0.4 2,-1.5 2,-0.1 56,-0.1 -0.907 24.3-127.9 -98.2 124.1 -8.2 5.6 -6.7 10 10 A G + 0 0 48 -2,-0.5 2,-0.4 27,-0.2 56,-0.1 -0.569 51.4 146.1 -76.9 87.7 -6.8 9.1 -7.4 11 11 A M + 0 0 137 -2,-1.5 2,-0.2 5,-0.0 54,-0.2 -0.821 43.1 55.8-129.6 94.6 -9.0 11.3 -5.1 12 12 A S S S- 0 0 71 -2,-0.4 4,-0.1 1,-0.1 -2,-0.0 -0.700 84.5 -99.1-175.7-132.4 -7.3 14.3 -3.6 13 13 A C S S- 0 0 130 -2,-0.2 3,-0.1 2,-0.1 -1,-0.1 0.503 80.3 -45.2-143.3 -51.5 -5.3 17.2 -5.2 14 14 A Q S > S+ 0 0 134 1,-0.1 2,-2.0 0, 0.0 3,-0.6 0.246 119.1 75.8-158.8 -46.9 -1.5 16.7 -5.1 15 15 A H T 3 S+ 0 0 120 1,-0.2 -2,-0.1 2,-0.1 -1,-0.1 -0.603 80.4 78.0 -75.1 82.7 -0.5 15.5 -1.6 16 16 A C T 3> S+ 0 0 12 -2,-2.0 4,-2.9 -3,-0.1 5,-0.3 0.297 70.7 69.0-147.4 -47.0 -1.8 12.0 -2.1 17 17 A V H <> S+ 0 0 41 -3,-0.6 4,-0.8 1,-0.3 -2,-0.1 0.899 112.0 38.0 -42.5 -53.4 0.8 10.0 -4.1 18 18 A K H > S+ 0 0 66 -4,-0.3 4,-2.8 2,-0.2 3,-0.5 0.886 112.4 56.9 -69.9 -40.0 3.2 10.2 -1.2 19 19 A A H > S+ 0 0 6 1,-0.3 4,-2.2 2,-0.2 5,-0.2 0.965 107.8 48.4 -54.7 -51.4 0.4 9.7 1.5 20 20 A V H X S+ 0 0 3 -4,-2.9 4,-0.6 2,-0.2 -1,-0.3 0.740 118.4 43.5 -58.9 -26.4 -0.6 6.4 -0.1 21 21 A E H >X S+ 0 0 72 -4,-0.8 4,-3.0 -3,-0.5 3,-1.1 0.965 110.6 49.3 -79.8 -69.7 3.1 5.5 -0.1 22 22 A T H 3X S+ 0 0 61 -4,-2.8 4,-0.9 1,-0.3 -2,-0.2 0.783 105.2 60.6 -43.5 -44.6 4.3 6.6 3.4 23 23 A S H >< S+ 0 0 8 -4,-2.2 3,-0.9 -5,-0.3 4,-0.4 0.930 115.2 32.8 -49.2 -55.3 1.3 4.8 5.0 24 24 A V H X< S+ 0 0 1 -3,-1.1 3,-2.1 -4,-0.6 -2,-0.2 0.923 114.0 62.9 -70.4 -41.9 2.5 1.4 3.6 25 25 A G H 3< S+ 0 0 36 -4,-3.0 -1,-0.2 1,-0.3 -2,-0.2 0.571 92.2 66.4 -54.8 -14.1 6.1 2.6 3.9 26 26 A E T << S+ 0 0 157 -3,-0.9 2,-0.4 -4,-0.9 -1,-0.3 0.725 78.4 101.5 -81.8 -23.9 5.6 2.9 7.7 27 27 A L X - 0 0 32 -3,-2.1 3,-2.5 -4,-0.4 24,-0.0 -0.498 65.7-150.9 -71.1 120.1 5.2 -0.9 8.0 28 28 A D T 3 S+ 0 0 165 -2,-0.4 -1,-0.2 1,-0.3 -3,-0.0 0.828 100.9 58.5 -49.1 -34.7 8.3 -2.6 9.3 29 29 A G T 3 S+ 0 0 15 18,-0.1 18,-2.3 17,-0.0 -1,-0.3 0.357 83.8 107.6 -82.4 -0.8 7.1 -5.6 7.2 30 30 A V E < +B 46 0A 35 -3,-2.5 16,-0.3 16,-0.3 3,-0.1 -0.431 37.6 174.5 -69.7 160.3 7.1 -3.6 3.9 31 31 A S E + 0 0 84 14,-2.9 2,-0.3 1,-0.5 15,-0.2 0.557 66.0 13.8-131.0 -42.6 9.7 -4.2 1.2 32 32 A A E -B 45 0A 40 13,-2.7 13,-1.4 2,-0.0 -1,-0.5 -0.988 47.8-176.0-142.4 147.2 8.8 -2.1 -1.9 33 33 A V E +B 44 0A 34 -2,-0.3 2,-2.4 11,-0.2 11,-0.3 -0.453 10.3 170.4-142.3 59.1 6.4 0.9 -2.3 34 34 A H E -B 43 0A 136 9,-2.8 9,-2.1 2,-0.1 2,-0.3 -0.422 18.6-170.9 -79.1 71.5 6.4 1.8 -6.1 35 35 A V E +B 42 0A 22 -2,-2.4 7,-0.2 7,-0.3 -14,-0.1 -0.494 24.9 149.9 -64.2 123.7 3.4 4.3 -5.9 36 36 A N E >>> +B 41 0A 84 5,-1.7 5,-2.0 -2,-0.3 3,-1.5 -0.293 2.2 154.8-150.0 58.7 2.2 5.4 -9.3 37 37 A L G >45S+ 0 0 29 1,-0.3 3,-1.2 3,-0.2 -27,-0.2 0.855 76.9 63.6 -56.5 -29.5 -1.5 6.1 -8.9 38 38 A E G 345S+ 0 0 174 1,-0.3 -1,-0.3 2,-0.1 -2,-0.0 0.837 106.9 42.2 -60.1 -35.7 -1.0 8.5 -11.9 39 39 A A G <45S- 0 0 81 -3,-1.5 -1,-0.3 2,-0.3 -2,-0.2 0.445 122.2-112.0 -86.4 -6.0 -0.1 5.4 -13.9 40 40 A G T <<5S+ 0 0 45 -3,-1.2 2,-0.3 -4,-0.6 -3,-0.2 0.813 86.1 89.2 73.8 34.8 -3.0 3.4 -12.3 41 41 A K E < - B 0 36A 97 -5,-2.0 -5,-1.7 -34,-0.1 -2,-0.3 -0.992 49.3-169.6-154.5 154.3 -0.6 1.1 -10.4 42 42 A V E - B 0 35A 2 -2,-0.3 2,-1.4 -7,-0.2 -36,-0.8 -0.837 17.3-152.4-142.4 102.7 1.3 0.9 -7.1 43 43 A D E +AB 5 34A 72 -9,-2.1 -9,-2.8 -2,-0.3 2,-0.6 -0.654 26.7 173.7 -84.7 93.3 3.9 -2.0 -7.0 44 44 A V E -AB 4 33A 3 -40,-2.5 -40,-2.8 -2,-1.4 2,-0.6 -0.914 16.4-168.8-105.9 114.0 3.9 -2.6 -3.2 45 45 A S E +AB 3 32A 17 -13,-1.4 -14,-2.9 -2,-0.6 -13,-2.7 -0.937 25.4 155.6-102.3 120.0 5.9 -5.6 -2.0 46 46 A F E -AB 2 30A 0 -44,-1.6 -44,-2.4 -2,-0.6 2,-1.6 -0.946 51.4 -94.7-148.4 160.5 5.0 -6.3 1.6 47 47 A D >> - 0 0 55 -18,-2.3 4,-2.2 -2,-0.3 3,-1.2 -0.573 32.1-176.8 -91.0 80.3 5.0 -9.1 4.2 48 48 A A T 34 S+ 0 0 19 -2,-1.6 -1,-0.2 1,-0.3 7,-0.1 0.711 77.1 68.2 -37.0 -39.1 1.5 -10.5 4.1 49 49 A D T 34 S+ 0 0 147 1,-0.2 -1,-0.3 -3,-0.1 3,-0.2 0.939 113.3 23.7 -51.6 -57.2 2.5 -12.9 6.9 50 50 A K T <4 S+ 0 0 148 -3,-1.2 2,-0.4 1,-0.3 -2,-0.2 0.878 142.4 19.4 -85.1 -41.7 2.9 -10.3 9.6 51 51 A V S < S- 0 0 9 -4,-2.2 -1,-0.3 -22,-0.1 -2,-0.1 -0.969 84.1-142.0-130.5 111.0 0.6 -7.6 8.1 52 52 A S > - 0 0 61 -2,-0.4 4,-2.2 -3,-0.2 3,-0.3 -0.376 32.3-101.0 -69.7 155.5 -1.9 -8.8 5.5 53 53 A V H > S+ 0 0 39 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.800 126.6 58.3 -37.9 -40.7 -2.7 -6.7 2.4 54 54 A K H > S+ 0 0 136 2,-0.2 4,-3.3 1,-0.2 5,-0.3 0.981 104.9 48.2 -57.6 -58.3 -5.8 -5.8 4.3 55 55 A D H > S+ 0 0 70 -3,-0.3 4,-2.6 1,-0.2 -2,-0.2 0.902 113.2 49.5 -47.4 -46.2 -3.7 -4.4 7.2 56 56 A I H X S+ 0 0 0 -4,-2.2 4,-1.1 2,-0.2 -1,-0.2 0.923 112.9 44.9 -63.9 -45.3 -1.6 -2.5 4.6 57 57 A A H >X S+ 0 0 2 -4,-2.8 4,-2.1 2,-0.2 3,-1.0 0.945 111.9 52.0 -63.4 -45.2 -4.7 -1.0 2.8 58 58 A D H 3X S+ 0 0 62 -4,-3.3 4,-2.0 1,-0.3 -2,-0.2 0.901 102.9 60.2 -60.4 -36.4 -6.3 -0.1 6.1 59 59 A A H 3< S+ 0 0 21 -4,-2.6 4,-0.4 -5,-0.3 -1,-0.3 0.813 103.2 50.9 -60.0 -31.6 -2.9 1.6 7.0 60 60 A I H XX S+ 0 0 1 -4,-1.1 4,-2.4 -3,-1.0 3,-2.3 0.951 107.5 52.9 -64.6 -48.4 -3.6 3.8 3.9 61 61 A E H 3< S+ 0 0 120 -4,-2.1 -2,-0.2 1,-0.3 -1,-0.2 0.793 96.4 67.6 -60.5 -26.9 -7.1 4.5 5.3 62 62 A D T 3< S+ 0 0 157 -4,-2.0 -1,-0.3 -5,-0.2 -2,-0.2 0.756 125.4 8.6 -56.9 -26.6 -5.4 5.6 8.6 63 63 A Q T <4 S+ 0 0 105 -3,-2.3 -2,-0.2 -4,-0.4 -3,-0.1 0.713 136.7 10.1-120.1 -63.7 -4.1 8.6 6.6 64 64 A G < - 0 0 8 -4,-2.4 -52,-0.1 -5,-0.2 -48,-0.0 -0.043 61.9-132.9-101.5-153.7 -5.6 8.8 3.1 65 65 A Y + 0 0 161 -54,-0.2 2,-0.2 -56,-0.1 -4,-0.1 -0.138 65.9 114.1-162.8 53.0 -8.5 7.0 1.5 66 66 A D + 0 0 0 -9,-0.1 2,-0.2 -50,-0.1 -2,-0.0 -0.625 37.9 108.6-133.9 62.2 -7.1 5.9 -1.8 67 67 A V + 0 0 12 -2,-0.2 -59,-0.3 -59,-0.2 -60,-0.1 -0.672 29.0 171.6-147.7 88.3 -6.9 2.2 -1.8 68 68 A A - 0 0 48 -61,-1.8 2,-0.3 1,-0.2 -60,-0.2 0.994 57.6-102.6 -49.7 -70.4 -9.4 0.3 -3.9 69 69 A K E -C 7 0B 117 -62,-0.9 -62,-1.7 -64,-0.1 2,-0.7 -0.952 51.5 -29.7 163.1-174.5 -7.5 -3.1 -3.2 70 70 A I E -C 6 0B 43 -64,-0.3 2,-1.0 -2,-0.3 -64,-0.2 -0.519 48.9-162.3 -68.3 106.7 -5.1 -5.8 -4.4 71 71 A E - 0 0 136 -66,-2.9 -66,-0.3 -2,-0.7 -1,-0.1 -0.828 64.9 -13.8 -90.1 99.9 -5.4 -5.9 -8.1 72 72 A G 0 0 42 -2,-1.0 -67,-0.5 -68,-0.1 0, 0.0 0.085 360.0 360.0 88.2 158.7 -3.9 -9.3 -8.9 73 73 A R 0 0 247 -69,-0.1 -2,-0.0 -3,-0.0 -68,-0.0 -0.283 360.0 360.0 -67.5 360.0 -1.7 -11.7 -6.9