==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER UNKNOWN FUNCTION 12-MAY-03 1P9I . COMPND 2 MOLECULE: CORTEXILLIN I/GCN4 HYBRID PEPTIDE; . SOURCE 2 SYNTHETIC: YES . AUTHOR S.IVANINSKII . 29 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2927.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 86.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 82.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 3 A Q > 0 0 201 0, 0.0 4,-2.0 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -14.1 15.8 62.2 9.4 2 4 A L H > + 0 0 130 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.947 360.0 50.8 -66.1 -40.7 12.5 61.3 7.7 3 5 A N H > S+ 0 0 130 1,-0.2 4,-2.6 2,-0.2 -1,-0.2 0.859 108.1 53.5 -64.6 -33.7 14.3 60.1 4.6 4 6 A A H > S+ 0 0 52 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.904 109.1 48.1 -67.0 -37.3 16.7 58.0 6.7 5 7 A L H X S+ 0 0 98 -4,-2.0 4,-2.7 2,-0.2 5,-0.2 0.938 112.1 49.4 -64.9 -44.6 13.7 56.3 8.3 6 8 A L H X S+ 0 0 79 -4,-2.6 4,-2.6 1,-0.2 5,-0.2 0.935 111.7 50.1 -56.0 -47.3 12.1 55.7 4.9 7 9 A A H X S+ 0 0 54 -4,-2.6 4,-2.5 2,-0.2 -1,-0.2 0.907 111.0 47.6 -61.3 -41.8 15.4 54.3 3.7 8 10 A S H X S+ 0 0 71 -4,-2.3 4,-2.5 2,-0.2 -1,-0.2 0.943 112.6 48.5 -66.2 -43.9 15.7 52.0 6.6 9 11 A L H X S+ 0 0 100 -4,-2.7 4,-2.9 1,-0.2 -2,-0.2 0.888 111.7 50.7 -61.8 -40.2 12.2 50.8 6.3 10 12 A E H X S+ 0 0 105 -4,-2.6 4,-2.3 -5,-0.2 -1,-0.2 0.911 110.8 48.1 -64.2 -43.7 12.7 50.2 2.6 11 13 A A H X S+ 0 0 61 -4,-2.5 4,-2.2 -5,-0.2 -2,-0.2 0.928 113.3 47.6 -62.4 -45.4 15.8 48.2 3.2 12 14 A E H X S+ 0 0 109 -4,-2.5 4,-2.9 1,-0.2 5,-0.2 0.926 110.7 52.1 -60.7 -44.2 14.1 46.1 5.8 13 15 A N H X S+ 0 0 85 -4,-2.9 4,-2.3 1,-0.2 -1,-0.2 0.887 109.4 48.9 -61.2 -42.0 11.1 45.5 3.6 14 16 A K H X S+ 0 0 111 -4,-2.3 4,-1.9 2,-0.2 -1,-0.2 0.935 113.1 47.8 -63.0 -43.0 13.3 44.3 0.8 15 17 A Q H X S+ 0 0 62 -4,-2.2 4,-2.5 1,-0.2 -2,-0.2 0.916 111.7 49.1 -62.5 -43.5 15.1 42.0 3.1 16 18 A L H X S+ 0 0 98 -4,-2.9 4,-2.7 1,-0.2 -1,-0.2 0.905 108.4 53.3 -66.1 -40.1 12.0 40.6 4.6 17 19 A K H X S+ 0 0 132 -4,-2.3 4,-2.0 -5,-0.2 -1,-0.2 0.909 111.0 47.4 -60.7 -38.2 10.5 40.0 1.1 18 20 A A H X S+ 0 0 59 -4,-1.9 4,-2.5 2,-0.2 -2,-0.2 0.888 110.5 51.6 -72.0 -36.1 13.6 38.0 0.2 19 21 A K H X S+ 0 0 104 -4,-2.5 4,-2.9 2,-0.2 5,-0.2 0.910 108.2 51.7 -65.7 -39.7 13.4 36.1 3.4 20 22 A V H X S+ 0 0 78 -4,-2.7 4,-2.9 2,-0.2 5,-0.2 0.929 109.3 50.7 -58.8 -43.0 9.8 35.2 2.7 21 23 A E H X S+ 0 0 124 -4,-2.0 4,-2.1 1,-0.2 -2,-0.2 0.911 111.7 47.9 -62.4 -41.9 10.9 34.0 -0.8 22 24 A E H X S+ 0 0 117 -4,-2.5 4,-2.1 2,-0.2 -1,-0.2 0.949 114.1 45.3 -62.5 -49.8 13.6 31.8 0.8 23 25 A L H X S+ 0 0 85 -4,-2.9 4,-2.4 2,-0.2 -2,-0.2 0.898 110.1 54.5 -70.1 -34.5 11.2 30.4 3.4 24 26 A L H X S+ 0 0 98 -4,-2.9 4,-1.9 -5,-0.2 -1,-0.2 0.939 109.2 48.5 -54.4 -48.7 8.5 29.7 0.9 25 27 A A H < S+ 0 0 65 -4,-2.1 4,-0.4 -5,-0.2 -2,-0.2 0.895 110.7 51.0 -63.5 -35.8 10.9 27.8 -1.2 26 28 A K H >< S+ 0 0 149 -4,-2.1 3,-1.7 1,-0.2 -1,-0.2 0.915 105.7 54.7 -68.6 -37.9 12.0 25.8 1.9 27 29 A V H 3< S+ 0 0 120 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.885 99.6 63.0 -61.1 -35.7 8.4 25.0 2.8 28 30 A G T 3< 0 0 63 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.653 360.0 360.0 -68.4 -9.8 8.1 23.6 -0.8 29 31 A E < 0 0 187 -3,-1.7 -3,-0.0 -4,-0.4 0, 0.0 -0.456 360.0 360.0 -80.9 360.0 10.7 21.0 0.2