==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 12-MAY-03 1P9J . COMPND 2 MOLECULE: CHIMERA OF EPIDERMAL GROWTH FACTOR(EGF) AND . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.WINGENS,T.WALMA,H.VAN INGEN,C.STORTELERS,J.E.VAN LEEUWEN, . 54 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4900.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 46.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 9.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 126 0, 0.0 2,-0.9 0, 0.0 28,-0.2 0.000 360.0 360.0 360.0 148.8 6.5 20.7 6.0 2 2 A V + 0 0 153 26,-0.1 2,-0.3 27,-0.0 25,-0.1 -0.802 360.0 152.1 -92.8 106.2 3.0 21.4 7.3 3 3 A S - 0 0 47 -2,-0.9 2,-0.3 23,-0.0 23,-0.1 -0.787 44.2-110.3-121.2 170.0 0.5 20.0 4.9 4 4 A H - 0 0 159 -2,-0.3 2,-0.3 22,-0.1 -2,-0.0 -0.787 37.4-111.9-101.0 150.3 -3.1 18.7 5.2 5 5 A F + 0 0 118 -2,-0.3 2,-0.3 19,-0.0 20,-0.0 -0.643 41.2 163.2 -93.2 133.9 -3.7 15.1 4.7 6 6 A N - 0 0 109 -2,-0.3 18,-0.5 1,-0.0 2,-0.1 -0.842 34.1 -96.5-136.1 173.6 -5.7 13.8 1.8 7 7 A D - 0 0 127 -2,-0.3 16,-0.1 1,-0.1 -1,-0.0 -0.332 40.2 -87.9 -92.2 173.7 -6.1 10.4 0.2 8 8 A a - 0 0 18 14,-0.4 4,-0.2 1,-0.1 -1,-0.1 -0.398 52.7 -94.3 -73.8 152.2 -4.5 8.6 -2.8 9 9 A P - 0 0 83 0, 0.0 -1,-0.1 0, 0.0 13,-0.1 -0.032 46.0 -82.3 -63.4 175.0 -5.9 9.1 -6.2 10 10 A L S S+ 0 0 184 1,-0.3 2,-1.3 2,-0.1 3,-0.3 0.757 124.8 59.4 -47.8 -41.4 -8.4 6.9 -8.1 11 11 A S > + 0 0 97 1,-0.2 3,-0.8 2,-0.1 4,-0.3 -0.599 66.8 150.0 -87.2 72.1 -5.8 4.4 -9.2 12 12 A H T 3 S+ 0 0 82 -2,-1.3 4,-0.3 1,-0.3 -1,-0.2 0.910 74.5 36.9 -77.5 -40.1 -4.7 3.6 -5.7 13 13 A D T 3 S+ 0 0 72 -3,-0.3 -1,-0.3 1,-0.2 6,-0.2 -0.137 89.3 116.5 -99.7 35.3 -3.6 0.0 -6.3 14 14 A G S < S+ 0 0 50 -3,-0.8 -1,-0.2 1,-0.1 -2,-0.1 0.994 91.6 4.8 -69.7 -68.3 -2.2 1.0 -9.7 15 15 A Y S S+ 0 0 193 -4,-0.3 2,-0.6 -3,-0.2 -1,-0.1 0.745 119.9 83.1 -86.4 -27.6 1.5 0.3 -9.4 16 16 A b S > S- 0 0 26 -4,-0.3 4,-1.2 4,-0.1 3,-0.4 -0.699 79.6-137.6 -89.3 116.1 1.1 -1.2 -6.0 17 17 A L T 4 + 0 0 71 26,-1.0 -3,-0.1 -2,-0.6 -2,-0.1 -0.204 68.1 22.7 -84.3 161.5 0.1 -4.8 -6.3 18 18 A H T 4 S- 0 0 83 1,-0.2 -1,-0.2 -5,-0.1 18,-0.1 0.755 136.0 -46.7 63.4 33.3 -2.3 -7.1 -4.5 19 19 A D T 4 S- 0 0 109 -3,-0.4 -2,-0.2 -6,-0.2 -1,-0.2 0.957 83.6-154.8 68.6 63.0 -4.5 -4.2 -3.3 20 20 A G < - 0 0 7 -4,-1.2 2,-1.4 1,-0.1 15,-0.2 -0.412 16.1-117.8 -76.8 141.9 -1.6 -2.0 -2.1 21 21 A V E -A 34 0A 62 13,-2.0 13,-2.8 -2,-0.1 2,-0.4 -0.570 33.2-166.3 -87.0 88.0 -2.2 0.5 0.6 22 22 A a E +A 33 0A 16 -2,-1.4 -14,-0.4 11,-0.3 2,-0.3 -0.613 14.5 168.8 -75.9 125.4 -1.4 3.9 -1.0 23 23 A M E -A 32 0A 87 9,-2.1 9,-2.4 -2,-0.4 2,-0.3 -0.955 31.0-127.3-136.3 157.0 -1.0 6.8 1.4 24 24 A Y E -A 31 0A 23 -18,-0.5 2,-0.7 -2,-0.3 7,-0.2 -0.758 15.4-142.7 -93.9 144.7 0.2 10.4 1.4 25 25 A I E >> -A 30 0A 55 5,-3.1 5,-1.4 -2,-0.3 4,-1.3 -0.935 14.6-170.8-110.0 104.8 2.8 11.5 3.9 26 26 A E T 45S+ 0 0 81 -2,-0.7 -1,-0.2 1,-0.2 -22,-0.1 0.859 79.0 58.4 -66.2 -38.3 1.7 15.1 4.7 27 27 A A T 45S+ 0 0 38 1,-0.2 -1,-0.2 -25,-0.1 -2,-0.0 0.783 120.7 25.0 -62.8 -33.3 4.9 15.9 6.7 28 28 A L T 45S- 0 0 121 -3,-0.5 -1,-0.2 2,-0.1 -2,-0.2 0.475 101.0-122.9-114.7 -7.1 7.3 15.3 3.8 29 29 A D T <5S+ 0 0 96 -4,-1.3 2,-0.2 1,-0.2 -3,-0.2 0.825 70.8 124.1 63.7 37.4 4.9 15.9 0.9 30 30 A K E < -A 25 0A 137 -5,-1.4 -5,-3.1 0, 0.0 2,-0.3 -0.670 53.1-130.8-119.2 171.5 5.6 12.4 -0.4 31 31 A Y E +A 24 0A 131 -7,-0.2 2,-0.3 -2,-0.2 -7,-0.2 -0.853 25.2 165.8-119.4 158.1 3.7 9.3 -1.4 32 32 A A E -A 23 0A 53 -9,-2.4 -9,-2.1 -2,-0.3 2,-0.4 -0.965 28.8-129.8-152.9 174.9 4.1 5.7 -0.5 33 33 A b E -A 22 0A 45 -2,-0.3 2,-0.4 -11,-0.2 -11,-0.3 -0.998 18.7-153.6-125.6 132.5 2.5 2.3 -0.6 34 34 A N E -A 21 0A 104 -13,-2.8 -13,-2.0 -2,-0.4 2,-0.3 -0.822 16.0-137.7 -99.9 142.9 2.4 0.1 2.5 35 35 A c - 0 0 54 -2,-0.4 2,-0.1 -15,-0.2 -15,-0.1 -0.685 13.0-115.3-104.0 155.6 2.1 -3.6 2.1 36 36 A V > - 0 0 75 -2,-0.3 3,-1.0 8,-0.2 2,-0.2 -0.433 40.9 -89.0 -84.6 159.8 0.0 -6.2 3.9 37 37 A V T 3 S+ 0 0 127 1,-0.2 -1,-0.1 -2,-0.1 3,-0.1 -0.480 109.0 26.7 -76.0 134.4 1.5 -9.0 6.1 38 38 A G T 3 S+ 0 0 19 1,-0.3 10,-2.7 -2,-0.2 2,-0.4 0.614 92.6 118.9 87.0 17.9 2.3 -12.3 4.4 39 39 A Y E < -B 47 0B 46 -3,-1.0 -1,-0.3 8,-0.2 2,-0.2 -0.941 44.1-166.8-120.6 134.6 2.9 -10.7 1.0 40 40 A I E +B 46 0B 82 6,-2.2 6,-1.8 -2,-0.4 5,-0.2 -0.755 36.0 68.3-129.9 164.3 6.2 -10.9 -0.6 41 41 A G S > S- 0 0 36 -2,-0.2 3,-0.9 3,-0.2 -2,-0.0 -0.118 85.1 -86.3 101.2 157.2 8.3 -9.5 -3.4 42 42 A E T 3 S+ 0 0 171 1,-0.3 -1,-0.1 2,-0.1 0, 0.0 0.828 135.2 39.5 -66.1 -29.1 9.7 -6.0 -3.7 43 43 A R T 3 S- 0 0 114 -3,-0.1 -26,-1.0 -27,-0.0 -1,-0.3 0.341 115.3-118.9 -98.3 0.2 6.4 -4.8 -5.2 44 44 A c < + 0 0 17 -3,-0.9 -3,-0.2 -28,-0.1 -8,-0.2 0.825 64.6 143.8 63.4 37.9 4.4 -7.0 -2.8 45 45 A Q + 0 0 46 -5,-0.2 -4,-0.2 -6,-0.1 2,-0.1 0.899 47.7 54.8 -69.0 -48.7 2.9 -9.1 -5.6 46 46 A Y E S-B 40 0B 132 -6,-1.8 -6,-2.2 1,-0.0 2,-0.4 -0.460 70.8-122.7-102.3 163.7 2.7 -12.6 -4.2 47 47 A R E -B 39 0B 111 -8,-0.2 2,-0.5 -2,-0.1 -8,-0.2 -0.813 22.5-126.0 -97.1 141.2 1.4 -14.4 -1.2 48 48 A D - 0 0 43 -10,-2.7 4,-0.3 -2,-0.4 3,-0.3 -0.787 27.7-161.9 -78.2 121.4 3.5 -16.5 1.2 49 49 A L >> + 0 0 101 -2,-0.5 4,-1.6 1,-0.2 3,-1.3 0.809 65.1 80.1 -81.3 -34.3 1.6 -19.7 1.1 50 50 A K T 34 S+ 0 0 152 1,-0.3 -1,-0.2 2,-0.2 -2,-0.0 0.706 89.6 52.1 -59.7 -30.3 2.8 -21.7 4.2 51 51 A W T >4 S+ 0 0 121 -3,-0.3 3,-0.5 1,-0.2 -1,-0.3 0.780 109.0 50.7 -79.4 -26.3 0.7 -20.0 6.8 52 52 A W T <4 S+ 0 0 117 -3,-1.3 2,-1.3 -4,-0.3 -2,-0.2 0.931 107.5 53.6 -69.2 -50.3 -2.6 -20.5 4.9 53 53 A E T 3< 0 0 163 -4,-1.6 -1,-0.2 0, 0.0 -2,-0.1 -0.350 360.0 360.0 -89.1 56.7 -1.9 -24.2 4.4 54 54 A L < 0 0 210 -2,-1.3 -3,-0.0 -3,-0.5 0, 0.0 -0.988 360.0 360.0-136.3 360.0 -1.3 -24.9 8.1