==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL GENOMICS 14-MAY-03 1PAV . COMPND 2 MOLECULE: HYPOTHETICAL PROTEIN TA1170/TA1414; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMOPLASMA ACIDOPHILUM; . AUTHOR D.MONLEON,A.YEE,C.S.LIU,C.ARROWSMITH,B.CELDA . 78 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3948.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 54 69.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 11.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 9.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 39 0, 0.0 59,-0.1 0, 0.0 60,-0.1 0.000 360.0 360.0 360.0-157.9 -2.5 -4.6 8.7 2 2 A D - 0 0 57 32,-0.2 2,-9.9 1,-0.2 33,-0.1 0.569 360.0-179.9 -72.9 -8.5 0.4 -7.0 9.2 3 3 A V S S+ 0 0 80 1,-0.3 -1,-0.2 33,-0.1 32,-0.1 0.464 74.3 79.8 27.3 -15.5 2.5 -3.9 9.3 4 4 A K + 0 0 168 -2,-9.9 -1,-0.3 2,-0.1 2,-0.2 0.143 68.0 129.5 -97.1 16.9 5.0 -6.7 9.8 5 5 A P - 0 0 11 0, 0.0 2,-0.6 0, 0.0 31,-0.3 -0.466 51.7-144.4 -75.0 144.4 4.9 -7.3 6.0 6 6 A D + 0 0 131 29,-0.6 2,-0.3 -2,-0.2 29,-0.1 -0.927 46.9 112.5-114.9 107.5 8.2 -7.6 4.1 7 7 A R - 0 0 46 -2,-0.6 2,-0.6 30,-0.1 30,-0.2 -0.927 64.6 -99.1-158.5 178.3 8.1 -6.2 0.6 8 8 A V + 0 0 96 -2,-0.3 2,-0.3 28,-0.1 30,-0.2 -0.922 52.5 142.1-115.8 105.8 9.4 -3.4 -1.6 9 9 A I + 0 0 0 28,-1.2 2,-0.3 -2,-0.6 63,-0.3 -0.881 11.1 142.4-148.0 110.1 6.9 -0.5 -2.0 10 10 A D - 0 0 36 28,-0.4 2,-0.4 -2,-0.3 30,-0.3 -0.973 19.5-175.2-151.8 133.6 8.0 3.1 -2.2 11 11 A A B -a 40 0A 5 28,-9.2 2,-0.8 59,-0.4 30,-0.7 -0.977 7.7-162.7-135.4 119.4 6.7 6.0 -4.3 12 12 A R S S- 0 0 147 -2,-0.4 28,-0.1 28,-0.4 57,-0.1 -0.875 84.2 -12.2-105.7 103.6 8.4 9.4 -4.3 13 13 A G S S+ 0 0 38 -2,-0.8 -1,-0.2 2,-0.1 3,-0.1 0.708 93.0 129.9 81.0 22.6 6.0 12.1 -5.7 14 14 A S - 0 0 42 1,-0.3 6,-0.5 -3,-0.2 7,-0.2 0.265 58.1-146.8 -89.3 10.1 3.7 9.4 -7.0 15 15 A Y S S+ 0 0 102 2,-1.2 30,-1.0 3,-0.3 29,-0.5 -0.176 77.2 57.9 57.8-151.4 0.8 11.2 -5.4 16 16 A C S S- 0 0 14 1,-0.7 32,-3.3 28,-0.5 33,-1.6 0.410 161.9 -69.9 32.4 -20.9 -2.0 9.2 -4.0 17 17 A P > - 0 0 0 0, 0.0 3,-7.6 0, 0.0 -2,-1.2 0.636 62.5 -98.1 -75.0-175.3 0.7 9.6 -3.9 18 18 A G T > S+ 0 0 4 1,-0.3 3,-1.0 -2,-0.2 -3,-0.3 0.718 129.6 66.5 -33.0 -26.9 1.7 8.3 -7.2 19 19 A P T >> + 0 0 0 0, 0.0 3,-1.2 0, 0.0 4,-1.0 0.556 66.6 102.8 -75.0 -8.4 2.5 5.2 -5.1 20 20 A L H <> S+ 0 0 19 -3,-7.6 4,-0.7 -6,-0.5 3,-0.3 0.786 89.0 42.1 -43.3 -30.2 -1.2 4.9 -4.5 21 21 A M H <> S+ 0 0 91 -3,-1.0 4,-3.5 -4,-0.3 5,-0.4 0.719 91.0 84.2 -89.3 -25.9 -0.9 2.1 -7.1 22 22 A E H <4 S+ 0 0 46 -3,-1.2 -2,-0.2 1,-0.2 -1,-0.2 0.765 96.2 47.4 -46.9 -27.3 2.3 0.8 -5.6 23 23 A L H >X S+ 0 0 0 -4,-1.0 4,-2.5 -3,-0.3 3,-1.9 0.958 109.3 48.0 -78.9 -57.8 -0.1 -1.1 -3.3 24 24 A I H 3X S+ 0 0 28 -4,-0.7 4,-0.5 1,-0.3 -2,-0.2 0.849 116.8 46.2 -50.5 -37.2 -2.5 -2.4 -5.9 25 25 A K H 3< S+ 0 0 102 -4,-3.5 4,-0.4 1,-0.2 -1,-0.3 0.608 109.0 58.6 -80.4 -13.5 0.5 -3.5 -7.8 26 26 A A H X> S+ 0 0 0 -3,-1.9 4,-2.7 -5,-0.4 3,-2.5 0.932 91.9 63.2 -79.1 -50.9 1.9 -4.9 -4.6 27 27 A Y H 3< S+ 0 0 52 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.777 104.8 51.1 -43.4 -31.0 -1.0 -7.3 -3.9 28 28 A K T 3< S+ 0 0 168 -4,-0.5 -1,-0.3 -5,-0.3 -2,-0.2 0.772 110.9 48.0 -78.3 -28.2 0.2 -8.9 -7.1 29 29 A Q T <4 S+ 0 0 94 -3,-2.5 -2,-0.2 -4,-0.4 -1,-0.1 0.913 119.5 35.8 -77.0 -46.5 3.7 -9.1 -5.7 30 30 A A S < S- 0 0 8 -4,-2.7 2,-0.3 4,-0.1 6,-0.1 0.119 85.4-120.6 -87.1-155.6 2.7 -10.5 -2.4 31 31 A K > - 0 0 108 4,-0.1 3,-1.8 45,-0.0 45,-0.1 -0.972 36.6 -69.8-150.6 159.3 0.0 -13.0 -1.5 32 32 A V T 3 S+ 0 0 73 -2,-0.3 45,-0.5 1,-0.3 44,-0.2 -0.172 121.5 26.7 -50.6 140.8 -3.1 -13.2 0.6 33 33 A G T 3 S+ 0 0 35 43,-5.0 -1,-0.3 42,-0.4 44,-0.3 0.517 107.0 107.8 80.0 6.1 -2.3 -13.3 4.3 34 34 A E < - 0 0 54 -3,-1.8 25,-0.7 42,-0.7 -1,-0.3 -0.521 57.9-140.6-107.9 176.7 0.9 -11.4 3.5 35 35 A V - 0 0 3 40,-0.5 -29,-0.6 -2,-0.2 2,-0.3 -0.956 9.9-167.6-138.8 155.6 2.0 -7.8 4.1 36 36 A I E -C 74 0B 0 38,-2.0 38,-2.4 -2,-0.3 2,-0.5 -0.994 13.5-141.7-147.1 139.1 4.0 -5.2 2.2 37 37 A S E -C 73 0B 33 -2,-0.3 -28,-1.2 36,-0.3 36,-0.3 -0.890 23.2-179.8-106.0 129.0 5.5 -1.9 3.2 38 38 A V - 0 0 0 34,-5.5 -28,-0.4 -2,-0.5 2,-0.3 -0.750 5.6-165.6-121.1 168.7 5.4 1.0 0.8 39 39 A Y + 0 0 35 32,-0.4 -28,-9.2 -2,-0.3 32,-0.6 -0.966 9.3 167.3-151.0 163.3 6.7 4.6 0.9 40 40 A S B -aB 11 70A 0 30,-9.9 30,-4.5 -30,-0.3 -28,-0.4 -0.934 26.5-153.9-163.0-179.8 6.3 7.9 -0.9 41 41 A T S S+ 0 0 66 -30,-0.7 -29,-0.2 28,-0.4 -1,-0.1 0.504 81.9 80.4-136.4 -33.9 7.1 11.6 -0.7 42 42 A D S S- 0 0 80 -31,-0.3 -26,-0.1 1,-0.1 -30,-0.1 0.823 93.3-133.4 -47.8 -34.2 4.4 13.3 -2.8 43 43 A A S S+ 0 0 41 -28,-0.2 -1,-0.1 22,-0.1 -27,-0.1 0.714 82.9 98.9 83.3 23.7 2.2 12.8 0.2 44 44 A G >> + 0 0 7 -29,-0.5 4,-2.5 2,-0.1 3,-1.2 0.724 69.5 59.2-107.8 -36.3 -0.6 11.5 -1.9 45 45 A T H 3> S+ 0 0 0 -30,-1.0 4,-4.8 -29,-1.0 6,-0.3 0.771 90.9 74.0 -64.7 -26.6 -0.1 7.7 -1.4 46 46 A K H 34 S+ 0 0 21 1,-0.2 -1,-0.3 2,-0.2 17,-0.1 0.852 110.8 28.7 -54.3 -36.5 -0.7 8.3 2.3 47 47 A K H <4 S+ 0 0 143 -3,-1.2 -2,-0.2 -31,-0.3 -1,-0.2 0.845 135.6 32.0 -90.8 -42.6 -4.3 8.8 1.4 48 48 A D H >X S+ 0 0 45 -32,-3.3 3,-5.3 -4,-2.5 4,-1.7 0.867 105.9 72.2 -81.1 -40.5 -4.4 6.6 -1.6 49 49 A A H 3X S+ 0 0 0 -4,-4.8 4,-1.2 -33,-1.6 3,-0.4 0.863 97.3 52.1 -39.5 -46.7 -1.8 4.2 -0.3 50 50 A P H 34 S+ 0 0 25 0, 0.0 -1,-0.3 0, 0.0 -2,-0.2 0.322 110.7 51.0 -75.0 9.2 -4.5 3.0 2.1 51 51 A A H <> S+ 0 0 22 -3,-5.3 4,-0.9 -6,-0.3 -2,-0.2 0.621 97.2 64.1-114.3 -28.5 -6.6 2.6 -1.0 52 52 A W H >X S+ 0 0 0 -4,-1.7 4,-4.0 -3,-0.4 3,-2.0 0.979 105.0 45.4 -59.9 -59.0 -4.2 0.5 -3.1 53 53 A I H 3X>S+ 0 0 7 -4,-1.2 4,-2.4 1,-0.3 5,-0.8 0.848 100.7 71.6 -52.3 -36.4 -4.3 -2.4 -0.6 54 54 A Q H 345S+ 0 0 110 1,-0.2 -1,-0.3 -5,-0.2 -2,-0.2 0.844 117.4 20.2 -48.1 -38.3 -8.1 -1.9 -0.6 55 55 A K H <<5S+ 0 0 133 -3,-2.0 -2,-0.2 -4,-0.9 -1,-0.2 0.760 115.3 71.3-100.0 -36.6 -8.0 -3.3 -4.1 56 56 A S H <5S- 0 0 8 -4,-4.0 -3,-0.2 -5,-0.2 -2,-0.2 0.926 103.1-122.0 -43.4 -60.6 -4.7 -5.0 -3.9 57 57 A G T <5 + 0 0 20 -4,-2.4 20,-5.4 1,-0.4 21,-1.5 0.539 68.1 120.4 121.0 20.9 -6.1 -7.7 -1.6 58 58 A Q E