==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 15-MAY-03 1PBZ . COMPND 2 MOLECULE: DE NOVO DESIGNED CYCLIC PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.WANG,M.M.ROSENBLATT,K.S.SUSLICK . 34 2 2 0 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2890.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 73.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 61.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 146 0, 0.0 4,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 -10.0 -5.0 -4.3 -0.1 2 2 A G > + 0 0 39 2,-0.1 4,-2.0 1,-0.1 5,-0.0 -0.340 360.0 144.4-168.8 73.8 -1.8 -2.7 1.4 3 3 A A H > S+ 0 0 86 2,-0.2 4,-2.2 3,-0.2 5,-0.1 0.851 94.8 46.0 -77.5 -38.8 0.3 -3.5 4.5 4 4 A E H > S+ 0 0 181 2,-0.2 4,-2.2 1,-0.1 5,-0.1 0.918 113.9 50.8 -60.8 -45.1 3.6 -2.6 2.7 5 5 A A H > S+ 0 0 41 2,-0.2 4,-2.5 1,-0.2 -2,-0.2 0.914 109.4 50.4 -54.2 -48.7 1.7 0.6 1.6 6 6 A A H X S+ 0 0 47 -4,-2.0 4,-2.7 2,-0.2 5,-0.2 0.873 107.5 52.9 -57.1 -42.1 0.7 1.1 5.3 7 7 A K H X S+ 0 0 156 -4,-2.2 4,-2.4 2,-0.2 -2,-0.2 0.898 112.3 45.4 -58.7 -42.7 4.5 0.8 6.4 8 8 A A H X S+ 0 0 58 -4,-2.2 4,-2.6 2,-0.2 -2,-0.2 0.891 110.9 54.0 -61.1 -44.6 5.3 3.5 3.7 9 9 A H H X S+ 0 0 110 -4,-2.5 4,-2.3 2,-0.2 5,-0.2 0.975 114.0 40.6 -53.4 -58.3 2.2 5.6 5.1 10 10 A A H X S+ 0 0 60 -4,-2.7 4,-1.8 2,-0.2 -2,-0.2 0.918 115.4 51.9 -50.9 -49.4 3.7 5.4 8.7 11 11 A K H X>S+ 0 0 101 -4,-2.4 4,-2.1 -5,-0.2 5,-0.8 0.884 116.2 40.5 -57.4 -43.6 7.3 6.0 7.4 12 12 A A H X5S+ 0 0 33 -4,-2.6 4,-0.5 3,-0.2 -2,-0.2 0.990 112.9 52.8 -63.3 -73.1 6.2 9.1 5.5 13 13 A A H <5S+ 0 0 75 -4,-2.3 -2,-0.2 4,-0.9 -3,-0.2 0.676 114.6 46.6 -31.9 -30.4 3.8 10.4 8.3 14 14 A E H <5S- 0 0 142 -4,-1.8 -1,-0.2 -5,-0.2 -2,-0.2 0.942 143.3 -5.6 -74.2 -70.8 6.9 10.1 10.6 15 15 A A H <5S+ 0 0 77 -4,-2.1 -3,-0.2 -5,-0.2 -2,-0.2 0.841 144.3 22.6 -96.3 -47.5 9.6 11.9 8.3 16 16 A G << 0 0 57 -5,-0.8 -4,-0.1 -4,-0.5 -7,-0.0 0.542 360.0 360.0 -75.6-124.6 7.6 12.5 4.9 17 17 A b 0 0 80 18,-0.0 -4,-0.9 -8,-0.0 -5,-0.2 -0.107 360.0 360.0-164.3 360.0 3.7 12.7 5.1 18 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 19 1 B a 0 0 108 0, 0.0 4,-0.4 0, 0.0 5,-0.0 0.000 360.0 360.0 360.0 -18.2 -8.0 -0.1 -4.7 20 2 B G > + 0 0 62 3,-0.1 4,-1.8 2,-0.1 5,-0.0 0.896 360.0 35.8 -82.2 -47.1 -6.0 1.4 -7.8 21 3 B A H > S+ 0 0 76 2,-0.2 4,-2.4 3,-0.1 5,-0.2 0.856 117.3 50.8 -74.8 -38.1 -8.3 4.5 -8.5 22 4 B E H > S+ 0 0 130 2,-0.2 4,-2.0 1,-0.2 5,-0.1 0.918 114.8 46.3 -62.3 -41.4 -9.2 5.3 -4.8 23 5 B A H > S+ 0 0 33 -4,-0.4 4,-2.0 2,-0.2 -2,-0.2 0.938 111.1 52.4 -57.0 -48.8 -5.3 5.2 -4.2 24 6 B A H X S+ 0 0 52 -4,-1.8 4,-2.6 2,-0.2 5,-0.2 0.930 109.1 48.6 -58.4 -47.9 -4.8 7.4 -7.3 25 7 B K H X S+ 0 0 126 -4,-2.4 4,-2.6 1,-0.2 -1,-0.2 0.896 113.6 47.5 -53.6 -48.8 -7.3 10.1 -6.0 26 8 B A H X S+ 0 0 53 -4,-2.0 4,-1.9 2,-0.2 -1,-0.2 0.807 110.9 52.4 -57.0 -38.3 -5.5 10.1 -2.5 27 9 B H H X S+ 0 0 115 -4,-2.0 4,-2.0 2,-0.2 -2,-0.2 0.957 113.8 41.7 -68.2 -50.4 -2.1 10.4 -4.3 28 10 B A H X S+ 0 0 61 -4,-2.6 4,-1.2 2,-0.2 -2,-0.2 0.930 110.3 59.6 -55.4 -48.2 -3.2 13.4 -6.4 29 11 B K H X S+ 0 0 123 -4,-2.6 4,-2.0 2,-0.2 3,-0.3 0.900 109.5 43.1 -47.2 -50.2 -5.0 14.8 -3.1 30 12 B A H <>S+ 0 0 28 -4,-1.9 5,-1.6 1,-0.2 -2,-0.2 0.999 114.6 47.8 -56.4 -71.9 -1.6 14.9 -1.4 31 13 B A H <5S+ 0 0 86 -4,-2.0 3,-0.2 3,-0.3 -2,-0.2 0.548 110.7 57.0 -45.7 -9.6 0.3 16.4 -4.5 32 14 B E H <5S+ 0 0 135 -4,-1.2 2,-0.6 -3,-0.3 -2,-0.2 0.913 123.6 21.2 -83.6 -65.4 -2.6 19.0 -4.7 33 15 B A T <5S- 0 0 63 -4,-2.0 -2,-0.2 -5,-0.1 -1,-0.1 -0.313 119.8-110.6 -91.5 56.1 -2.1 20.3 -1.0 34 16 B G T 5 0 0 71 -2,-0.6 -3,-0.3 -3,-0.2 -4,-0.1 0.686 360.0 360.0 -10.9 76.6 1.5 18.8 -1.3 35 17 B b < 0 0 79 -5,-1.6 -1,-0.2 -8,-0.2 -2,-0.1 -0.465 360.0 360.0 58.0 360.0 0.8 16.2 1.1