==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=9-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 21-MAY-03 1PE4 . COMPND 2 MOLECULE: NEUROTOXIN CN11; . SOURCE 2 ORGANISM_SCIENTIFIC: CENTRUROIDES NOXIUS; . AUTHOR F.DEL RIO-PORTILLA,E.HERNANDEZ-MARIN,G.PIMIENTA,F.V.CORONAS, . 67 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4285.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 40.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 9.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 9.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 184 0, 0.0 48,-0.9 0, 0.0 50,-0.8 0.000 360.0 360.0 360.0 124.6 8.1 -12.6 -2.8 2 2 A D E -A 48 0A 104 46,-0.2 46,-0.2 47,-0.2 49,-0.2 -0.078 360.0-135.5 -58.0 163.1 7.4 -9.8 -0.2 3 3 A G E +A 47 0A 0 44,-1.0 44,-1.7 1,-0.1 3,-0.1 -0.456 69.2 106.3-123.8 61.4 6.7 -6.3 -1.5 4 4 A Y + 0 0 93 42,-0.2 -1,-0.1 -2,-0.1 44,-0.1 0.004 42.8 103.3-123.8 26.7 8.8 -4.0 0.6 5 5 A P - 0 0 66 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.686 66.4-152.0 -81.4 -19.0 11.5 -3.0 -2.0 6 6 A L + 0 0 73 -3,-0.1 -2,-0.0 1,-0.1 40,-0.0 0.886 22.3 176.8 46.2 47.2 9.9 0.4 -2.5 7 7 A A + 0 0 42 1,-0.1 2,-0.7 2,-0.1 50,-0.1 0.909 62.7 67.7 -43.4 -56.1 11.3 0.4 -6.1 8 8 A S S S- 0 0 23 48,-0.3 -1,-0.1 1,-0.2 49,-0.1 -0.599 73.3-156.1 -74.1 111.0 9.6 3.7 -6.9 9 9 A N S S+ 0 0 120 -2,-0.7 -1,-0.2 1,-0.2 3,-0.1 0.726 95.4 47.6 -59.0 -20.9 11.3 6.4 -4.8 10 10 A G S S- 0 0 21 1,-0.3 56,-2.6 55,-0.1 2,-0.3 0.912 128.6 -39.0 -86.5 -49.0 8.1 8.3 -5.2 11 11 A a - 0 0 1 54,-0.2 -1,-0.3 1,-0.1 33,-0.1 -0.907 34.7-155.7-176.3 149.4 5.4 5.7 -4.4 12 12 A K S S- 0 0 1 -2,-0.3 46,-0.7 2,-0.2 45,-0.3 0.889 77.0 -15.7 -94.9 -70.7 4.6 2.0 -4.9 13 13 A F S S- 0 0 11 32,-1.0 32,-0.2 1,-0.3 46,-0.2 -0.225 95.1 -50.5-116.1-154.3 0.8 1.7 -4.6 14 14 A G S S+ 0 0 0 47,-0.1 -1,-0.3 30,-0.1 -2,-0.2 0.448 82.8 93.3 -62.6-148.9 -2.0 3.9 -3.3 15 15 A b + 0 0 37 7,-2.3 2,-0.2 1,-0.2 -3,-0.1 0.858 44.2 162.4 59.1 109.2 -2.0 5.5 0.1 16 16 A S > - 0 0 14 4,-0.2 3,-0.8 1,-0.1 27,-0.2 -0.774 31.5-158.4-162.0 111.6 -0.6 9.0 -0.0 17 17 A G T 3 S+ 0 0 51 1,-0.3 2,-2.3 -2,-0.2 -1,-0.1 0.975 97.7 44.5 -52.9 -65.1 -0.9 11.8 2.6 18 18 A L T 3 S+ 0 0 93 47,-0.3 -1,-0.3 46,-0.2 2,-0.3 -0.339 111.2 74.7 -78.8 58.1 -0.2 14.7 0.2 19 19 A G S < S- 0 0 34 -2,-2.3 -3,-0.1 -3,-0.8 42,-0.1 -0.922 79.6 -91.7-155.7 179.7 -2.4 13.2 -2.5 20 20 A E S S- 0 0 177 -2,-0.3 2,-1.5 40,-0.2 -4,-0.2 0.092 73.4 -47.2 -83.4-161.0 -6.0 12.6 -3.7 21 21 A N + 0 0 150 1,-0.1 -1,-0.1 -6,-0.1 3,-0.1 -0.578 69.8 152.2 -76.7 90.3 -8.2 9.5 -3.1 22 22 A N > + 0 0 15 -2,-1.5 -7,-2.3 -6,-0.2 3,-0.7 -0.411 11.0 139.3-117.2 54.3 -5.7 6.7 -4.0 23 23 A P T > + 0 0 59 0, 0.0 3,-2.4 0, 0.0 4,-0.4 0.327 34.4 113.8 -79.3 8.8 -7.1 3.8 -1.8 24 24 A T T 3> + 0 0 44 1,-0.3 4,-3.6 2,-0.2 5,-0.3 0.758 51.4 89.0 -51.0 -25.2 -6.5 1.4 -4.7 25 25 A c H <> S+ 0 0 9 -3,-0.7 4,-1.6 1,-0.2 -1,-0.3 0.795 85.4 54.4 -43.4 -33.0 -3.9 -0.1 -2.4 26 26 A N H <> S+ 0 0 103 -3,-2.4 4,-1.9 2,-0.2 -1,-0.2 0.995 115.7 32.2 -66.8 -65.4 -6.7 -2.3 -1.1 27 27 A H H > S+ 0 0 119 -4,-0.4 4,-0.7 1,-0.2 7,-0.2 0.902 115.2 61.7 -59.3 -43.3 -7.9 -3.8 -4.5 28 28 A V H >X>S+ 0 0 1 -4,-3.6 4,-1.7 1,-0.2 5,-1.2 0.917 106.7 44.1 -49.0 -52.2 -4.4 -3.7 -5.8 29 29 A d H 3<5S+ 0 0 5 -4,-1.6 6,-2.1 -5,-0.3 4,-0.4 0.929 117.6 43.7 -60.8 -48.8 -3.1 -6.1 -3.2 30 30 A E H 3<5S+ 0 0 114 -4,-1.9 -1,-0.3 4,-0.3 -2,-0.2 0.407 118.7 49.0 -78.6 2.9 -6.1 -8.4 -3.5 31 31 A K H <<5S+ 0 0 161 -3,-0.9 -2,-0.2 -4,-0.7 -3,-0.2 0.823 128.9 7.6-103.6 -73.1 -5.9 -8.2 -7.3 32 32 A K T <5S+ 0 0 103 -4,-1.7 -3,-0.2 1,-0.2 -2,-0.1 0.757 143.4 38.0 -83.6 -25.9 -2.3 -8.8 -8.6 33 33 A A S