==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 20-APR-07 2PLZ . COMPND 2 MOLECULE: BETA-DEFENSIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR J.LUBKOWSKI,M.PAZGIER,W.LU . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2953.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 52.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D > 0 0 107 0, 0.0 4,-2.6 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 172.5 9.6 3.6 17.0 2 2 A H H > + 0 0 80 1,-0.2 4,-2.6 2,-0.2 5,-0.3 0.913 360.0 50.9 -57.9 -47.9 10.9 6.6 15.1 3 3 A Y H > S+ 0 0 169 1,-0.2 4,-2.4 2,-0.2 -1,-0.2 0.932 115.7 42.0 -59.8 -47.4 14.6 5.5 15.0 4 4 A N H > S+ 0 0 98 2,-0.2 4,-1.8 1,-0.2 6,-0.2 0.878 111.4 55.4 -69.3 -36.3 13.7 2.1 13.6 5 5 A a H <>S+ 0 0 4 -4,-2.6 5,-2.9 1,-0.2 3,-0.2 0.957 113.0 41.8 -56.0 -54.0 11.1 3.5 11.2 6 6 A V H ><5S+ 0 0 78 -4,-2.6 3,-1.6 1,-0.2 -2,-0.2 0.903 113.1 53.3 -64.3 -42.4 13.7 5.8 9.7 7 7 A S H 3<5S+ 0 0 77 -4,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.801 108.0 51.7 -64.4 -28.3 16.5 3.2 9.7 8 8 A S T 3<5S- 0 0 65 -4,-1.8 -1,-0.3 -3,-0.2 -2,-0.2 0.356 126.0 -97.7 -89.4 3.8 14.2 0.7 7.8 9 9 A G T < 5S+ 0 0 58 -3,-1.6 -3,-0.2 1,-0.3 2,-0.1 0.621 86.3 114.6 91.2 17.4 13.4 3.2 5.1 10 10 A G < - 0 0 5 -5,-2.9 2,-0.4 -6,-0.2 -1,-0.3 -0.446 52.4-138.2-105.8 179.3 10.1 4.5 6.4 11 11 A Q E -A 35 0A 143 24,-2.3 24,-3.1 -2,-0.1 2,-0.4 -0.992 17.7-118.9-138.9 150.2 8.8 7.8 7.7 12 12 A b E +A 34 0A 24 -2,-0.4 2,-0.3 22,-0.2 22,-0.2 -0.721 33.2 177.3 -88.0 137.5 6.5 8.6 10.6 13 13 A L E -A 33 0A 50 20,-2.6 20,-2.9 -2,-0.4 14,-0.1 -0.985 34.2-156.1-138.0 148.9 3.2 10.4 10.1 14 14 A Y S S+ 0 0 149 -2,-0.3 2,-0.2 18,-0.2 3,-0.1 0.335 88.5 54.5 -96.4 -4.2 0.3 11.5 12.2 15 15 A S S S- 0 0 75 1,-0.2 18,-0.2 18,-0.1 -2,-0.1 -0.548 110.2 -53.0-109.2-172.5 -2.0 11.4 9.2 16 16 A A - 0 0 79 -2,-0.2 -1,-0.2 1,-0.1 -2,-0.1 -0.237 64.1 -98.5 -61.0 149.5 -2.7 8.5 6.7 17 17 A c - 0 0 27 1,-0.1 -1,-0.1 -4,-0.1 6,-0.1 -0.460 51.0 -91.5 -60.9 143.3 0.2 6.8 5.1 18 18 A P > - 0 0 51 0, 0.0 3,-2.6 0, 0.0 -1,-0.1 -0.300 42.5-108.0 -52.3 151.0 0.8 8.2 1.5 19 19 A I T 3 S+ 0 0 152 1,-0.3 -2,-0.1 -3,-0.1 0, 0.0 0.739 118.1 56.1 -60.5 -26.9 -1.2 6.0 -1.0 20 20 A F T 3 S+ 0 0 174 2,-0.0 -1,-0.3 16,-0.0 2,-0.3 0.374 108.6 55.9 -85.0 4.0 2.0 4.4 -2.4 21 21 A T < - 0 0 12 -3,-2.6 2,-0.3 -4,-0.1 -4,-0.1 -0.824 67.5-148.4-127.4 171.6 3.0 3.1 1.1 22 22 A R - 0 0 162 -2,-0.3 14,-2.2 12,-0.0 2,-0.1 -0.949 35.3 -84.9-139.2 157.3 1.5 1.1 3.9 23 23 A I E +B 35 0A 103 -2,-0.3 12,-0.2 12,-0.2 3,-0.1 -0.407 37.9 174.8 -64.7 138.5 1.8 1.1 7.7 24 24 A Q E - 0 0 92 10,-3.2 2,-0.3 1,-0.3 11,-0.2 0.387 61.7 -53.1-117.5 -10.7 4.7 -0.9 9.1 25 25 A G E -B 34 0A 30 9,-0.8 9,-2.7 2,-0.0 -1,-0.3 -0.981 69.8 -63.6 157.7-160.1 4.5 -0.1 12.8 26 26 A T E -B 33 0A 76 -2,-0.3 2,-0.3 7,-0.3 7,-0.3 -0.716 32.2-164.6-119.8 168.8 4.2 2.9 15.1 27 27 A b E > +B 32 0A 1 5,-1.9 5,-2.7 -2,-0.2 4,-0.4 -0.977 59.4 31.8-142.4 164.3 6.3 6.0 16.1 28 28 A Y T > 5S- 0 0 99 -2,-0.3 3,-1.9 1,-0.2 -1,-0.2 0.973 133.1 -37.4 58.7 62.9 6.3 8.6 18.8 29 29 A R T 3 5S- 0 0 224 1,-0.3 -1,-0.2 2,-0.1 -2,-0.0 0.827 113.2 -62.4 60.6 34.2 5.0 6.8 21.9 30 30 A G T 3 5S+ 0 0 47 1,-0.1 -1,-0.3 2,-0.1 -2,-0.2 0.463 116.4 107.5 81.5 -2.8 2.5 5.0 19.6 31 31 A R T < 5S+ 0 0 184 -3,-1.9 2,-0.2 -4,-0.4 -3,-0.2 0.621 74.0 48.7 -90.2 -15.4 0.7 8.1 18.4 32 32 A A E