==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 11-JUN-03 1PMX . COMPND 2 MOLECULE: INSULIN-LIKE GROWTH FACTOR IB; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.J.SKELTON . 86 2 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7027.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 47.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 22.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 110 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.7 4.2 -16.4 -9.2 2 2 A P - 0 0 110 0, 0.0 2,-0.7 0, 0.0 0, 0.0 -0.269 360.0-117.2 -72.2 161.5 5.5 -13.3 -10.9 3 3 A E + 0 0 110 49,-0.0 2,-0.3 2,-0.0 49,-0.1 -0.874 48.9 150.4-105.3 107.0 3.7 -9.9 -10.8 4 4 A T - 0 0 49 -2,-0.7 2,-0.5 47,-0.1 44,-0.2 -0.800 38.5-131.0-129.0 170.8 2.5 -8.7 -14.2 5 5 A L + 0 0 7 42,-0.9 2,-0.3 -2,-0.3 42,-0.1 -0.933 39.0 144.3-130.9 110.1 -0.3 -6.6 -15.6 6 6 A a > + 0 0 44 -2,-0.5 3,-1.1 42,-0.1 2,-0.1 -0.943 48.4 6.3-140.2 161.2 -2.3 -7.8 -18.6 7 7 A G T >> S- 0 0 54 -2,-0.3 4,-1.9 1,-0.3 3,-0.7 -0.405 127.6 -10.1 70.0-143.0 -5.9 -7.6 -19.8 8 8 A A H 3> S+ 0 0 67 1,-0.2 4,-3.2 2,-0.2 -1,-0.3 0.814 133.5 64.4 -59.4 -31.3 -8.4 -5.5 -17.9 9 9 A E H <> S+ 0 0 65 -3,-1.1 4,-1.6 2,-0.2 -1,-0.2 0.889 105.2 43.8 -60.1 -40.4 -5.8 -5.1 -15.2 10 10 A L H <> S+ 0 0 8 -3,-0.7 4,-1.8 2,-0.2 -2,-0.2 0.929 118.2 42.8 -70.7 -46.6 -3.5 -3.2 -17.6 11 11 A V H X S+ 0 0 62 -4,-1.9 4,-2.2 1,-0.2 -2,-0.2 0.836 111.2 57.1 -68.2 -33.5 -6.2 -1.1 -19.1 12 12 A D H X S+ 0 0 46 -4,-3.2 4,-2.3 -5,-0.2 -1,-0.2 0.902 107.0 48.0 -64.3 -42.3 -7.7 -0.5 -15.6 13 13 A A H X S+ 0 0 2 -4,-1.6 4,-3.0 2,-0.2 5,-0.3 0.942 112.6 47.1 -64.2 -49.2 -4.4 1.0 -14.3 14 14 A L H X>S+ 0 0 0 -4,-1.8 5,-1.8 1,-0.2 4,-1.7 0.887 117.3 43.8 -60.3 -39.8 -4.0 3.3 -17.3 15 15 A Q H <5S+ 0 0 107 -4,-2.2 -1,-0.2 3,-0.2 -2,-0.2 0.820 116.3 47.4 -74.7 -31.8 -7.6 4.4 -17.0 16 16 A F H <5S+ 0 0 108 -4,-2.3 -2,-0.2 -5,-0.2 -1,-0.2 0.812 124.3 31.9 -77.9 -32.0 -7.3 4.7 -13.2 17 17 A V H <5S+ 0 0 37 -4,-3.0 -3,-0.2 -5,-0.2 -2,-0.2 0.939 137.1 18.9 -87.6 -67.7 -4.0 6.6 -13.4 18 18 A b T ><5S+ 0 0 7 -4,-1.7 3,-1.0 -5,-0.3 2,-0.5 0.952 82.8 157.4 -70.4 -51.5 -4.2 8.7 -16.6 19 19 A G G > >S+ 0 0 2 -18,-0.3 4,-2.0 3,-0.1 5,-0.6 0.718 132.3 50.2-103.0 -30.9 3.4 -1.1 -22.2 44 44 A V H >>S+ 0 0 49 2,-0.2 4,-2.9 3,-0.2 5,-1.6 0.994 116.5 35.7 -71.2 -68.4 2.4 -4.6 -23.2 45 45 A D H 45S+ 0 0 62 1,-0.2 -1,-0.2 3,-0.2 5,-0.1 0.682 123.4 50.2 -59.8 -17.6 5.7 -6.2 -24.1 46 46 A E H 45S+ 0 0 76 3,-0.1 -1,-0.2 2,-0.0 -2,-0.2 0.833 130.6 10.6 -90.5 -38.5 7.3 -4.1 -21.3 47 47 A c H <5S+ 0 0 9 -4,-2.0 -42,-0.9 -3,-0.2 5,-0.3 0.673 129.6 49.7-113.1 -27.7 4.9 -5.0 -18.4 48 48 A a T < - 0 0 72 -2,-0.1 3,-1.4 1,-0.1 4,-0.3 -0.860 20.8-129.8-113.8 147.5 6.9 -0.8 -12.3 54 54 A L T > S+ 0 0 15 -2,-0.3 3,-1.8 1,-0.3 4,-0.4 0.778 103.4 73.4 -63.5 -27.3 3.5 0.9 -11.8 55 55 A R T >> S+ 0 0 174 1,-0.3 3,-1.4 2,-0.2 4,-0.6 0.782 82.6 70.1 -58.3 -26.9 5.3 4.3 -12.0 56 56 A R H X> S+ 0 0 90 -3,-1.4 4,-1.1 1,-0.3 3,-0.8 0.807 83.4 71.1 -60.8 -29.8 5.6 3.7 -15.7 57 57 A L H <> S+ 0 0 5 -3,-1.8 4,-0.9 -4,-0.3 -1,-0.3 0.804 92.0 57.9 -56.9 -31.0 1.9 4.2 -16.1 58 58 A E H <4 S+ 0 0 101 -3,-1.4 -1,-0.3 -4,-0.4 -2,-0.2 0.840 97.1 61.4 -69.3 -34.1 2.4 7.9 -15.4 59 59 A M H << S+ 0 0 64 -3,-0.8 -1,-0.2 -4,-0.6 -2,-0.2 0.909 103.8 48.3 -58.7 -45.0 4.8 8.2 -18.4 60 60 A Y H < S+ 0 0 6 -4,-1.1 -36,-0.4 -37,-0.1 -1,-0.2 0.785 90.2 102.6 -67.5 -27.7 2.0 7.2 -20.8 61 61 A b S < S- 0 0 12 -4,-0.9 -38,-0.1 -38,-0.2 -39,-0.1 -0.358 78.7-119.4 -60.5 130.8 -0.4 9.7 -19.1 62 62 A A - 0 0 11 1,-0.1 -40,-0.1 -2,-0.1 -1,-0.1 -0.198 14.3-120.5 -67.0 162.2 -0.7 12.8 -21.3 63 63 A P S S+ 0 0 127 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.767 85.0 95.3 -76.2 -25.5 0.2 16.3 -19.8 64 64 A L - 0 0 90 -43,-0.3 -43,-0.0 -42,-0.1 -44,-0.0 0.010 63.0-149.3 -58.3 171.0 -3.3 17.7 -20.3 65 65 A K - 0 0 164 -45,-0.1 3,-0.1 -44,-0.0 -1,-0.0 -0.994 8.1-124.9-148.4 140.0 -5.8 17.7 -17.5 66 66 A P - 0 0 59 0, 0.0 2,-0.2 0, 0.0 -45,-0.0 0.118 46.5 -71.4 -69.9-169.2 -9.7 17.4 -17.3 67 67 A A + 0 0 97 2,-0.0 2,-0.3 0, 0.0 0, 0.0 -0.612 56.9 158.8 -89.3 148.5 -12.0 19.9 -15.6 68 68 A K - 0 0 186 -2,-0.2 2,-0.4 -3,-0.1 -3,-0.0 -0.975 40.8-103.5-165.0 153.1 -12.3 20.2 -11.8 69 69 A S 0 0 124 -2,-0.3 -2,-0.0 0, 0.0 0, 0.0 -0.690 360.0 360.0 -86.1 131.0 -13.4 22.7 -9.1 70 70 A A 0 0 171 -2,-0.4 -2,-0.1 0, 0.0 0, 0.0 -0.941 360.0 360.0-155.2 360.0 -10.7 24.5 -7.3 71 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 72 101 B R 0 0 248 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-176.8 0.1 2.8 2.3 73 102 B N - 0 0 115 1,-0.1 3,-0.2 2,-0.1 7,-0.0 -0.407 360.0-161.2 -65.1 134.0 1.7 3.5 -1.1 74 103 B d S > S+ 0 0 50 1,-0.2 2,-2.0 -2,-0.1 3,-0.7 0.874 81.7 67.0 -83.0 -41.5 -0.5 2.2 -4.0 75 104 B F T 3 S+ 0 0 68 1,-0.2 -1,-0.2 5,-0.1 -20,-0.1 -0.494 75.2 94.6 -82.0 72.2 2.3 2.2 -6.6 76 105 B E T 3 S- 0 0 123 -2,-2.0 2,-0.3 1,-0.5 -1,-0.2 0.627 89.2 -3.4-125.6 -45.4 4.3 -0.6 -5.0 77 106 B S S <> S- 0 0 46 -3,-0.7 4,-1.2 -24,-0.1 -1,-0.5 -0.884 70.6-100.0-144.8 174.6 3.3 -3.8 -6.7 78 107 B V H > S+ 0 0 11 -2,-0.3 4,-1.0 1,-0.2 -1,-0.0 0.814 121.8 51.6 -68.6 -30.7 0.8 -5.2 -9.3 79 108 B A H > S+ 0 0 39 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.878 101.9 59.4 -73.2 -39.6 -1.5 -6.4 -6.5 80 109 B A H > S+ 0 0 8 1,-0.2 4,-2.8 2,-0.2 5,-0.2 0.873 100.7 56.2 -56.9 -40.2 -1.5 -3.0 -4.8 81 110 B L H X S+ 0 0 9 -4,-1.2 4,-2.3 2,-0.2 5,-0.2 0.909 109.5 45.6 -59.8 -43.7 -3.0 -1.4 -7.9 82 111 B R H X S+ 0 0 118 -4,-1.0 4,-3.8 2,-0.2 -2,-0.2 0.951 115.0 45.7 -65.0 -51.2 -5.9 -3.8 -7.9 83 112 B R H < S+ 0 0 185 -4,-2.4 -2,-0.2 1,-0.2 -1,-0.2 0.885 113.2 51.6 -59.7 -40.5 -6.6 -3.5 -4.2 84 113 B d H < S+ 0 0 49 -4,-2.8 -1,-0.2 -5,-0.2 -2,-0.2 0.931 119.3 34.6 -62.9 -47.3 -6.4 0.3 -4.4 85 114 B M H < S+ 0 0 55 -4,-2.3 2,-2.7 1,-0.2 -2,-0.2 0.952 109.3 65.0 -72.9 -52.2 -8.8 0.5 -7.3 86 115 B Y < 0 0 155 -4,-3.8 -1,-0.2 -5,-0.2 -4,-0.0 -0.414 360.0 360.0 -73.3 71.2 -11.1 -2.3 -6.2 87 116 B G 0 0 135 -2,-2.7 -3,-0.1 -3,-0.2 -2,-0.1 -0.541 360.0 360.0-149.3 360.0 -12.2 -0.6 -3.1