==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALLING PROTEIN 30-JUN-92 2PNB . COMPND 2 MOLECULE: PHOSPHATIDYLINOSITOL 3-KINASE P85-ALPHA SUBUNIT . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR G.W.BOOKER,A.L.BREEZE,A.K.DOWNING,G.PANAYOTOU,I.GOUT, . 104 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7304.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 48.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 1.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 17 16.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 11 10.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 4.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 17 A L 0 0 100 0, 0.0 73,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 64.3 2.4 -8.7 -13.7 2 18 A Q - 0 0 192 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.718 360.0 -31.6 -76.8 -19.2 5.8 -9.7 -15.2 3 19 A D S S- 0 0 97 0, 0.0 4,-0.1 0, 0.0 -1,-0.0 0.281 81.5-154.6-170.1 -24.0 7.2 -6.5 -13.8 4 20 A A - 0 0 15 2,-0.1 71,-0.0 5,-0.0 0, 0.0 0.234 17.4-118.5 53.0 170.8 4.4 -3.9 -13.8 5 21 A E S S+ 0 0 80 97,-0.1 98,-0.2 98,-0.0 99,-0.1 0.797 104.0 50.7-108.4 -63.2 5.2 -0.2 -13.9 6 22 A W S S+ 0 0 4 23,-0.1 24,-0.5 94,-0.1 2,-0.4 0.855 108.8 66.4 -45.0 -36.3 3.9 1.6 -10.8 7 23 A Y - 0 0 15 22,-0.2 24,-0.1 1,-0.1 22,-0.0 -0.732 65.8-167.6 -90.4 134.4 5.7 -1.2 -8.9 8 24 A W - 0 0 40 -2,-0.4 -1,-0.1 22,-0.2 -2,-0.1 0.825 63.1 -78.1 -89.3 -33.7 9.5 -1.2 -9.2 9 25 A G S S- 0 0 45 21,-0.1 -5,-0.0 0, 0.0 -2,-0.0 0.492 80.6 -59.3 139.7 35.4 10.0 -4.7 -7.7 10 26 A D S S+ 0 0 60 32,-0.0 21,-0.1 22,-0.0 2,-0.1 0.715 71.4 157.0 68.8 119.9 9.6 -4.4 -4.0 11 27 A I - 0 0 33 19,-0.3 21,-0.3 3,-0.0 2,-0.3 -0.277 33.7 -88.3-140.6-130.5 12.0 -2.0 -2.1 12 28 A S > - 0 0 37 -2,-0.1 4,-2.3 19,-0.1 5,-0.3 -0.911 40.1 -88.3-149.1 175.7 12.0 -0.1 1.2 13 29 A R H >>S+ 0 0 182 -2,-0.3 4,-1.7 1,-0.2 5,-0.7 0.836 120.8 64.1 -58.8 -30.4 11.0 3.2 2.8 14 30 A E H >5S+ 0 0 136 3,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.975 113.3 29.5 -58.5 -55.8 14.3 4.5 1.8 15 31 A E H >5S+ 0 0 73 2,-0.2 4,-1.6 3,-0.2 5,-0.3 0.991 123.1 48.5 -68.3 -60.5 13.7 4.2 -1.9 16 32 A V H >X5S+ 0 0 5 -4,-2.3 4,-2.5 2,-0.2 3,-1.1 0.942 119.5 38.3 -42.5 -66.6 9.9 4.7 -1.9 17 33 A N H >X5S+ 0 0 59 -4,-1.7 4,-2.1 -5,-0.3 3,-0.6 0.966 108.8 59.7 -50.5 -66.0 10.1 7.7 0.3 18 34 A E H 3< - 0 0 26 -10,-0.2 4,-1.4 1,-0.1 5,-0.1 -0.970 53.7-167.5-148.8 134.1 -4.1 -10.0 -10.7 74 90 A V H >>S+ 0 0 4 -2,-0.4 4,-2.1 2,-0.2 5,-0.7 0.901 92.5 59.5 -83.9 -42.6 -3.2 -6.5 -9.7 75 91 A V H >5S+ 0 0 52 1,-0.2 4,-1.0 2,-0.2 -1,-0.2 0.872 108.3 48.7 -53.8 -35.1 -2.5 -5.2 -13.1 76 92 A E H >5S+ 0 0 114 2,-0.2 4,-1.6 3,-0.1 -1,-0.2 0.946 119.9 36.2 -70.2 -47.5 -6.1 -6.1 -13.8 77 93 A L H >X5S+ 0 0 17 -4,-1.4 4,-1.4 2,-0.2 3,-1.2 0.999 117.4 47.6 -67.4 -71.5 -7.4 -4.4 -10.7 78 94 A I H 3X5S+ 0 0 4 -4,-2.1 4,-2.8 1,-0.3 3,-0.2 0.813 109.6 59.3 -39.7 -34.9 -5.1 -1.4 -10.5 79 95 A N H 3X S- 0 0 70 -4,-0.4 3,-0.8 1,-0.1 -1,-0.2 -0.785 85.2-146.6 -90.7 114.4 -12.8 6.4 1.6 91 107 A P T 3 S+ 0 0 90 0, 0.0 2,-0.2 0, 0.0 -3,-0.1 0.115 78.7 43.5 -65.3-172.0 -16.5 7.2 1.3 92 108 A K T 3 S+ 0 0 204 1,-0.1 2,-0.2 -5,-0.1 -2,-0.0 0.343 125.5 26.9 56.6 -13.0 -17.9 10.7 0.9 93 109 A L S < S- 0 0 76 -3,-0.8 2,-0.3 -6,-0.2 -1,-0.1 -0.737 75.0-130.4-151.4-159.7 -15.0 11.4 -1.5 94 110 A D - 0 0 90 -2,-0.2 2,-0.3 -5,-0.0 -7,-0.2 -0.987 5.5-141.9-164.2 155.9 -12.7 9.7 -3.9 95 111 A V B -E 86 0C 61 -9,-1.2 -9,-1.1 -2,-0.3 2,-0.4 -0.922 5.2-161.0-125.5 151.1 -9.0 9.3 -4.8 96 112 A K - 0 0 121 -2,-0.3 2,-1.0 -11,-0.2 -11,-0.1 -0.940 3.3-167.3-134.0 112.8 -7.2 9.1 -8.2 97 113 A L + 0 0 10 -2,-0.4 2,-0.1 -16,-0.2 -71,-0.1 -0.488 33.8 142.7 -97.8 66.3 -3.7 7.7 -8.4 98 114 A L + 0 0 79 -2,-1.0 -1,-0.1 1,-0.2 -71,-0.1 -0.125 54.6 76.3 -95.1 39.6 -2.8 8.7 -12.0 99 115 A Y + 0 0 118 -73,-0.3 -71,-0.6 -2,-0.1 -1,-0.2 -0.457 60.4 171.4-148.7 71.1 0.8 9.6 -11.2 100 116 A P B -b 28 0A 53 0, 0.0 2,-0.4 0, 0.0 -71,-0.1 -0.192 19.9-140.6 -75.4 170.6 2.9 6.5 -10.7 101 117 A V + 0 0 16 -73,-0.6 2,-0.3 -95,-0.3 -81,-0.0 -0.986 35.9 119.8-135.9 145.5 6.7 6.5 -10.4 102 118 A S - 0 0 37 -2,-0.4 -96,-0.1 2,-0.1 -94,-0.1 -0.917 61.6 -99.4-172.4-160.5 9.4 4.2 -11.8 103 119 A K 0 0 148 -2,-0.3 -98,-0.0 -98,-0.2 -95,-0.0 0.230 360.0 360.0-127.9 8.2 12.5 3.9 -13.9 104 120 A Y 0 0 211 -99,-0.1 -2,-0.1 0, 0.0 -99,-0.0 -0.176 360.0 360.0 -51.3 360.0 10.9 2.6 -17.1