==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DNA BINDING PROTEIN 12-OCT-94 1POG . COMPND 2 MOLECULE: OCT-1 POU HOMEODOMAIN DNA-BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.COX,P.J.A.VAN TILBORG,W.DE LAAT,R.BOELENS,H.C.VAN LEEUWEN, . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5242.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 38 61.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 4.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 31 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 254 0, 0.0 2,-0.8 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -64.9 -19.8 13.0 -3.8 2 2 A R + 0 0 182 1,-0.2 0, 0.0 2,-0.0 0, 0.0 -0.735 360.0 167.4 -88.5 105.8 -18.4 10.7 -1.0 3 3 A R - 0 0 173 -2,-0.8 -1,-0.2 2,-0.0 0, 0.0 0.869 37.1-132.8 -82.7 -43.1 -15.2 8.9 -2.3 4 4 A K + 0 0 140 1,-0.2 2,-0.3 36,-0.1 37,-0.1 0.928 46.9 153.1 78.5 84.9 -13.7 7.4 0.9 5 5 A K - 0 0 102 35,-0.1 2,-0.3 37,-0.1 37,-0.2 -0.975 29.5-172.3-145.0 155.7 -10.0 8.4 0.8 6 6 A R - 0 0 107 -2,-0.3 36,-1.7 0, 0.0 39,-0.1 -0.967 9.9-174.6-150.8 135.4 -6.8 9.1 2.9 7 7 A T + 0 0 86 -2,-0.3 2,-0.3 34,-0.1 34,-0.1 -0.527 57.2 97.5-126.6 63.0 -3.3 10.5 2.0 8 8 A S S S- 0 0 83 -2,-0.1 2,-0.4 2,-0.1 37,-0.0 -0.957 72.5-121.3-150.5 130.9 -1.5 10.1 5.4 9 9 A I + 0 0 98 -2,-0.3 2,-0.4 4,-0.1 -2,-0.1 -0.603 34.7 172.7 -82.8 124.2 0.8 7.3 6.6 10 10 A E >> - 0 0 107 -2,-0.4 4,-2.2 1,-0.0 3,-1.3 -0.989 43.5-111.8-132.3 134.9 -0.5 5.6 9.7 11 11 A T H 3> S+ 0 0 112 -2,-0.4 4,-1.7 1,-0.3 5,-0.2 0.720 113.5 51.4 -46.2 -41.4 1.3 2.4 10.9 12 12 A N H 3> S+ 0 0 110 2,-0.2 4,-1.7 1,-0.2 -1,-0.3 0.799 113.7 43.6 -71.6 -33.9 -1.7 -0.1 10.1 13 13 A I H <> S+ 0 0 3 -3,-1.3 4,-2.3 2,-0.2 5,-0.3 0.902 112.5 53.7 -73.4 -41.8 -2.1 1.1 6.4 14 14 A R H X S+ 0 0 81 -4,-2.2 4,-1.9 2,-0.2 -2,-0.2 0.883 116.1 39.6 -53.0 -42.0 1.8 1.2 5.9 15 15 A V H X S+ 0 0 56 -4,-1.7 4,-3.1 -5,-0.2 5,-0.3 0.886 115.1 50.3 -73.0 -48.8 1.9 -2.6 7.1 16 16 A A H X S+ 0 0 47 -4,-1.7 4,-0.6 2,-0.2 -2,-0.2 0.766 116.4 43.9 -60.4 -29.0 -1.3 -3.6 5.2 17 17 A L H X S+ 0 0 0 -4,-2.3 4,-0.8 2,-0.1 -2,-0.2 0.846 116.1 47.6 -77.6 -42.3 0.2 -1.9 2.0 18 18 A E H X S+ 0 0 58 -4,-1.9 4,-1.1 -5,-0.3 3,-0.4 0.896 114.4 44.7 -64.0 -44.0 3.7 -3.6 2.8 19 19 A K H X S+ 0 0 158 -4,-3.1 4,-0.8 1,-0.2 -1,-0.2 0.726 101.5 68.1 -77.1 -22.8 2.3 -7.1 3.4 20 20 A S H X S+ 0 0 24 -4,-0.6 4,-1.6 -5,-0.3 -1,-0.2 0.829 102.6 48.1 -52.4 -40.3 -0.0 -6.7 0.2 21 21 A F H < S+ 0 0 1 -4,-0.8 -2,-0.2 -3,-0.4 -1,-0.2 0.912 103.2 59.3 -68.2 -51.0 3.3 -6.9 -1.8 22 22 A L H < S+ 0 0 102 -4,-1.1 -2,-0.2 1,-0.2 -1,-0.2 0.658 109.0 45.9 -54.8 -20.3 4.7 -10.0 0.1 23 23 A E H < S- 0 0 145 -4,-0.8 2,-0.4 1,-0.3 -2,-0.2 0.923 139.4 -2.7 -83.9 -61.5 1.5 -12.0 -1.1 24 24 A N < - 0 0 53 -4,-1.6 -1,-0.3 1,-0.1 -2,-0.1 -0.989 66.6-160.2-135.9 124.3 1.7 -10.8 -4.8 25 25 A Q S S+ 0 0 105 -2,-0.4 -1,-0.1 1,-0.3 -3,-0.1 0.918 87.1 22.4 -73.6 -50.7 4.5 -8.2 -5.8 26 26 A K S S+ 0 0 166 1,-0.1 -1,-0.3 -5,-0.1 -5,-0.1 -0.710 72.3 135.1-116.3 75.5 3.1 -6.7 -9.1 27 27 A P > + 0 0 22 0, 0.0 4,-2.0 0, 0.0 3,-0.3 0.022 42.8 162.8 -97.9 30.8 -0.8 -7.4 -8.9 28 28 A T H >> + 0 0 44 1,-0.2 4,-2.2 2,-0.2 3,-0.5 0.704 42.3 17.7 -52.6-100.5 -1.2 -3.8 -10.0 29 29 A S H 3> S+ 0 0 85 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.692 129.4 42.2 -43.7 -36.1 -4.3 -2.0 -11.5 30 30 A E H 3> S+ 0 0 161 -3,-0.3 4,-1.2 2,-0.1 -1,-0.2 0.897 117.0 45.6 -77.1 -44.9 -6.9 -4.7 -10.3 31 31 A E H S+ 0 0 13 -4,-1.9 5,-1.1 -5,-0.2 -2,-0.2 0.858 107.2 53.8 -60.6 -37.8 -8.4 0.4 -0.8 37 37 A D H <5S+ 0 0 144 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.850 98.9 63.8 -62.6 -38.9 -11.9 -1.2 -0.2 38 38 A Q H <5S+ 0 0 172 -4,-1.3 -1,-0.2 -3,-0.1 -2,-0.2 0.889 125.9 2.1 -53.3 -47.7 -10.5 -3.3 2.7 39 39 A L T <5S- 0 0 59 -4,-1.0 -3,-0.1 -3,-0.1 -26,-0.0 0.281 101.3 -86.8-105.3-125.6 -9.6 -0.1 4.8 40 40 A N T 5 + 0 0 63 2,-0.0 2,-0.2 -34,-0.0 -3,-0.1 -0.532 68.4 154.7-150.1 69.4 -10.4 3.5 3.6 41 41 A M < - 0 0 4 -5,-1.1 2,-0.2 -36,-0.2 -34,-0.1 -0.657 44.8-115.6-101.0 157.6 -7.2 4.3 1.5 42 42 A E > - 0 0 26 -36,-1.7 4,-1.1 -2,-0.2 -37,-0.1 -0.608 18.4-144.8 -80.6 148.6 -6.5 6.7 -1.5 43 43 A K H > S+ 0 0 76 -2,-0.2 4,-1.8 2,-0.2 5,-0.2 0.722 98.3 60.7 -88.7 -27.1 -5.5 5.0 -4.8 44 44 A E H > S+ 0 0 100 2,-0.2 4,-1.9 1,-0.2 5,-0.2 0.949 109.3 50.7 -54.0 -48.5 -3.0 7.6 -6.0 45 45 A V H > S+ 0 0 19 2,-0.2 4,-3.1 1,-0.2 5,-0.3 0.885 106.9 50.6 -52.3 -56.8 -1.3 6.5 -2.7 46 46 A I H X S+ 0 0 0 -4,-1.1 4,-2.8 2,-0.2 5,-0.2 0.925 112.8 45.3 -55.0 -52.3 -1.4 2.7 -3.3 47 47 A R H X S+ 0 0 143 -4,-1.8 4,-1.6 2,-0.2 -1,-0.2 0.881 118.3 43.6 -57.3 -45.7 0.1 2.9 -6.9 48 48 A V H X S+ 0 0 88 -4,-1.9 4,-1.5 2,-0.2 -2,-0.2 0.922 115.5 47.1 -67.6 -50.7 2.9 5.3 -5.6 49 49 A W H X S+ 0 0 18 -4,-3.1 4,-2.2 1,-0.2 3,-0.2 0.919 114.2 48.8 -54.9 -47.8 3.6 3.3 -2.3 50 50 A F H X S+ 0 0 0 -4,-2.8 4,-1.1 -5,-0.3 -2,-0.2 0.823 107.4 55.8 -60.9 -36.7 3.7 0.0 -4.4 51 51 A C H X S+ 0 0 80 -4,-1.6 4,-0.5 2,-0.2 -1,-0.2 0.839 110.6 44.2 -61.8 -36.6 6.2 1.7 -7.0 52 52 A N H >X S+ 0 0 82 -4,-1.5 3,-0.6 -3,-0.2 4,-0.5 0.886 111.4 52.4 -78.9 -42.2 8.7 2.6 -4.2 53 53 A R H 3< S+ 0 0 6 -4,-2.2 3,-0.4 1,-0.2 -2,-0.2 0.752 95.7 74.8 -58.2 -28.3 8.4 -1.0 -2.5 54 54 A R H 3< S+ 0 0 75 -4,-1.1 3,-0.3 1,-0.2 -1,-0.2 0.865 102.6 35.1 -53.9 -46.9 9.2 -2.5 -6.0 55 55 A Q H << S+ 0 0 100 -3,-0.6 -1,-0.2 -4,-0.5 2,-0.2 0.486 127.0 40.5 -88.1 -6.3 13.0 -1.6 -5.9 56 56 A K < + 0 0 63 -4,-0.5 -1,-0.2 -3,-0.4 3,-0.1 -0.709 67.1 156.6-146.0 86.4 13.3 -2.3 -2.0 57 57 A E S S- 0 0 84 -3,-0.3 -1,-0.1 -2,-0.2 -35,-0.1 0.978 84.4 -14.3 -73.7 -67.9 11.2 -5.4 -1.3 58 58 A K S S+ 0 0 199 4,-0.0 -1,-0.2 -36,-0.0 4,-0.0 -0.611 109.6 107.0-140.5 71.8 12.8 -6.7 2.0 59 59 A R S S- 0 0 178 -3,-0.1 3,-0.1 -2,-0.1 -3,-0.1 0.676 87.0 -58.8-114.9 -91.0 16.1 -4.6 2.0 60 60 A I S S+ 0 0 143 1,-0.2 2,-0.7 0, 0.0 -4,-0.0 0.480 112.6 37.0-128.0 -83.6 16.5 -1.6 4.6 61 61 A D 0 0 123 -3,-0.0 -1,-0.2 1,-0.0 -2,-0.0 -0.734 360.0 360.0 -89.5 109.6 13.9 1.3 4.4 62 62 A I 0 0 48 -2,-0.7 -5,-0.1 -3,-0.1 -44,-0.1 -0.885 360.0 360.0-103.4 360.0 10.3 0.1 3.6