==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 26-APR-07 2PO8 . COMPND 2 MOLECULE: MCOTI-II; . SOURCE 2 ORGANISM_SCIENTIFIC: MOMORDICA COCHINCHINENSIS; . AUTHOR M.CEMAZAR,A.JOSHI,A.E.MARK,D.J.CRAIK,N.L.DALY . 34 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2657.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A C 0 0 100 0, 0.0 30,-0.1 0, 0.0 31,-0.1 0.000 360.0 360.0 360.0 127.9 4.9 7.2 -5.1 2 2 A P - 0 0 47 0, 0.0 3,-0.1 0, 0.0 29,-0.0 -0.269 360.0-168.6 -58.9 138.4 4.7 3.5 -4.2 3 3 A K S S+ 0 0 170 1,-0.1 2,-0.5 31,-0.1 24,-0.0 0.797 71.5 59.1 -97.4 -37.9 6.8 1.2 -6.4 4 4 A I + 0 0 121 2,-0.0 2,-0.3 0, 0.0 24,-0.2 -0.821 65.5 142.7 -98.2 129.6 5.4 -2.1 -5.2 5 5 A L + 0 0 85 -2,-0.5 2,-0.3 22,-0.1 22,-0.1 -0.957 16.0 172.9-163.7 144.9 1.7 -2.8 -5.6 6 6 A K - 0 0 97 -2,-0.3 20,-1.2 7,-0.0 2,-0.0 -0.951 44.7 -66.9-150.1 166.9 -0.6 -5.7 -6.5 7 7 A K B +A 25 0A 141 -2,-0.3 2,-0.3 18,-0.2 18,-0.3 -0.311 55.2 169.0 -59.5 135.1 -4.3 -6.6 -6.6 8 8 A a - 0 0 8 16,-2.3 3,-0.1 13,-0.1 6,-0.0 -0.994 31.6-171.1-149.9 144.7 -6.0 -6.7 -3.2 9 9 A R S S- 0 0 210 -2,-0.3 2,-0.3 1,-0.2 3,-0.1 0.164 80.2 -3.1-120.2 14.1 -9.6 -6.9 -2.1 10 10 A R S > S- 0 0 159 1,-0.1 3,-0.6 11,-0.0 -1,-0.2 -0.956 86.4 -80.0 177.1 177.6 -8.9 -6.3 1.6 11 11 A D G > S+ 0 0 120 -2,-0.3 3,-2.4 1,-0.2 7,-0.1 0.907 120.0 62.0 -63.0 -46.8 -6.1 -5.7 4.1 12 12 A S G 3 S+ 0 0 91 1,-0.3 -1,-0.2 -3,-0.1 4,-0.1 0.716 89.4 72.2 -53.9 -25.4 -5.2 -9.4 4.4 13 13 A D G < S+ 0 0 45 -3,-0.6 -1,-0.3 1,-0.1 -2,-0.2 0.572 102.3 44.7 -69.1 -10.0 -4.3 -9.4 0.7 14 14 A b S < S- 0 0 20 -3,-2.4 6,-0.2 -4,-0.1 -1,-0.1 -0.999 88.1-111.0-140.2 141.5 -1.2 -7.4 1.5 15 15 A P > - 0 0 89 0, 0.0 3,-2.0 0, 0.0 -2,-0.0 -0.134 42.7 -96.0 -63.4 162.9 1.5 -7.7 4.2 16 16 A G T 3 S+ 0 0 88 1,-0.3 3,-0.1 -4,-0.1 -4,-0.0 0.368 111.9 86.6 -64.3 8.6 1.9 -5.1 7.0 17 17 A A T 3 S- 0 0 81 1,-0.0 12,-0.6 11,-0.0 -1,-0.3 0.725 108.2 -3.4 -78.7 -22.4 4.6 -3.4 4.8 18 18 A C E < S-B 28 0B 16 -3,-2.0 2,-0.4 10,-0.2 10,-0.2 -0.859 76.1-113.1-152.2-176.9 1.7 -1.5 3.1 19 19 A I E -B 27 0B 85 8,-3.0 8,-2.8 -2,-0.3 2,-0.5 -0.983 29.4-106.3-134.0 144.6 -2.0 -1.2 3.1 20 20 A a E -B 26 0B 33 -2,-0.4 6,-0.2 6,-0.2 -9,-0.1 -0.541 41.0-151.7 -69.8 116.7 -4.7 -2.1 0.5 21 21 A R > - 0 0 75 4,-3.1 3,-1.5 -2,-0.5 4,-0.2 -0.233 29.9 -96.7 -83.0 176.4 -6.0 1.2 -0.9 22 22 A G T 3 S+ 0 0 89 1,-0.3 -1,-0.1 2,-0.1 -2,-0.1 0.711 118.0 69.0 -65.9 -22.5 -9.4 1.8 -2.4 23 23 A N T 3 S- 0 0 102 2,-0.2 -1,-0.3 1,-0.1 3,-0.1 0.445 118.5-106.9 -77.9 2.2 -8.2 1.3 -5.9 24 24 A G S < S+ 0 0 21 -3,-1.5 -16,-2.3 1,-0.3 2,-0.3 0.770 86.2 103.4 78.3 28.5 -7.8 -2.4 -5.1 25 25 A Y B S-A 7 0A 72 -18,-0.3 -4,-3.1 -4,-0.2 -1,-0.3 -0.947 79.0 -90.8-138.4 159.0 -4.0 -2.3 -4.9 26 26 A b E -B 20 0B 9 -20,-1.2 2,-0.4 -2,-0.3 -6,-0.2 -0.466 40.2-162.6 -70.0 135.8 -1.3 -2.2 -2.2 27 27 A G E -B 19 0B 5 -8,-2.8 -8,-3.0 -2,-0.2 -22,-0.1 -0.985 16.2-125.0-127.5 126.8 -0.3 1.2 -1.1 28 28 A S E > -B 18 0B 26 -2,-0.4 3,-1.3 -10,-0.2 -10,-0.2 -0.319 20.8-123.3 -65.8 147.0 2.9 2.1 0.8 29 29 A G G > S+ 0 0 55 -12,-0.6 3,-0.5 1,-0.3 -1,-0.1 0.846 111.8 52.6 -59.6 -36.2 2.5 4.0 4.1 30 30 A S G 3> S+ 0 0 89 1,-0.2 4,-1.9 3,-0.1 -1,-0.3 -0.112 70.7 118.7 -93.1 37.2 4.7 6.8 2.8 31 31 A D G <4 + 0 0 60 -3,-1.3 2,-2.4 1,-0.2 -1,-0.2 0.846 59.8 75.4 -69.6 -32.1 2.7 7.3 -0.4 32 32 A G T <4 S+ 0 0 80 -3,-0.5 -1,-0.2 1,-0.2 -3,-0.0 -0.222 113.8 19.2 -75.3 50.1 1.9 10.8 0.7 33 33 A G T 4 0 0 70 -2,-2.4 -1,-0.2 -3,-0.3 -2,-0.2 0.049 360.0 360.0-179.2 -45.2 5.5 11.8 -0.2 34 34 A V < 0 0 98 -4,-1.9 -6,-0.1 -6,-0.1 -1,-0.1 -0.997 360.0 360.0-135.8 360.0 6.8 9.2 -2.6