==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 18-JUN-03 1PQR . COMPND 2 MOLECULE: ALPHA-A-CONOTOXIN EIVA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.-W.CHI,K.-H.PARK,J.-E.SUK,B.M.OLIVERA,J.M.MCINTOSH,K.- . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2906.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 139 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 97.3 6.6 -8.3 2.3 2 2 A a - 0 0 80 1,-0.2 9,-0.0 14,-0.0 2,-0.0 0.179 360.0-117.6-124.2-121.3 3.0 -7.4 1.3 3 3 A b - 0 0 91 9,-0.2 -1,-0.2 10,-0.1 8,-0.1 -0.025 34.4-163.5-150.8 -86.9 1.0 -9.2 -1.6 4 4 A G - 0 0 9 8,-0.3 9,-0.2 6,-0.2 10,-0.1 -0.803 45.0 -21.2 129.2-167.8 -0.2 -7.2 -4.7 5 5 A P S S+ 0 0 81 0, 0.0 2,-0.3 0, 0.0 8,-0.2 0.504 94.3 102.6 -53.9 -12.2 -2.6 -7.2 -7.8 6 6 A Y S S- 0 0 191 6,-0.1 5,-0.1 7,-0.1 -2,-0.1 -0.644 87.3 -27.1 -89.2 131.6 -3.2 -11.1 -8.0 7 7 A X S S- 0 0 126 -2,-0.3 -3,-0.1 1,-0.1 0, 0.0 0.206 70.4 -99.8 37.2-174.7 -6.6 -12.3 -6.6 8 8 A N S S+ 0 0 142 2,-0.1 -1,-0.1 4,-0.1 4,-0.1 -0.086 82.4 91.5-143.1 39.1 -8.8 -10.7 -3.8 9 9 A A S S- 0 0 95 3,-0.0 -2,-0.0 0, 0.0 0, 0.0 0.752 121.8 -26.1 -90.4 -92.0 -8.7 -12.1 -0.2 10 10 A A S S+ 0 0 88 2,-0.0 2,-0.5 0, 0.0 -6,-0.2 0.503 117.9 105.8 -89.3 -9.5 -5.9 -9.9 1.5 11 11 A b + 0 0 13 -8,-0.1 2,-0.3 -5,-0.1 3,-0.1 -0.644 41.9 157.1 -88.3 115.8 -4.2 -9.2 -2.0 12 12 A H > - 0 0 95 -2,-0.5 3,-1.3 1,-0.1 -8,-0.3 -0.980 50.6-115.9-134.9 146.0 -4.7 -5.6 -3.3 13 13 A X T 3 S+ 0 0 61 -2,-0.3 8,-0.3 1,-0.3 3,-0.2 0.916 116.8 15.0 -46.6 -56.1 -2.8 -3.3 -5.9 14 14 A c T 3 S+ 0 0 28 6,-0.2 -1,-0.3 1,-0.1 6,-0.1 -0.406 86.5 120.6-116.9 56.1 -1.9 -0.7 -3.2 15 15 A G < + 0 0 52 -3,-1.3 -1,-0.1 -5,-0.0 -2,-0.1 0.664 62.6 85.0 -78.7 -18.2 -2.7 -2.7 0.0 16 16 A a S S- 0 0 31 -4,-0.3 3,-0.1 -3,-0.2 -14,-0.0 -0.094 77.5-130.0 -74.9 172.6 1.0 -2.1 1.1 17 17 A K S S+ 0 0 190 1,-0.3 2,-0.3 2,-0.1 -1,-0.1 0.919 92.1 19.9 -80.5 -76.9 2.9 0.8 2.9 18 18 A V S S+ 0 0 128 1,-0.1 -1,-0.3 7,-0.0 7,-0.0 -0.755 114.0 39.3 -95.6 142.1 5.8 1.4 0.6 19 19 A G S S+ 0 0 63 -2,-0.3 2,-0.3 1,-0.2 -3,-0.2 0.940 77.5 128.4 84.5 85.0 5.9 0.2 -3.2 20 20 A R - 0 0 88 1,-0.1 -1,-0.2 -6,-0.1 -6,-0.2 -0.986 54.1 -55.7-163.6 160.1 2.5 0.7 -4.9 21 21 A X >> - 0 0 47 -2,-0.3 4,-1.2 -8,-0.3 3,-0.7 0.213 54.1 -99.9 -41.8 159.0 0.5 2.2 -7.9 22 22 A X H 3> S+ 0 0 135 1,-0.2 4,-1.6 2,-0.2 3,-0.1 0.811 118.5 50.8 -52.2 -42.8 0.5 6.0 -9.2 23 23 A Y H 34 S+ 0 0 130 2,-0.2 -1,-0.2 1,-0.2 -2,-0.1 0.774 109.9 50.3 -63.7 -33.2 -2.9 7.0 -7.5 24 24 A c H <4 S+ 0 0 44 -3,-0.7 4,-0.2 1,-0.1 -2,-0.2 0.708 114.6 41.4 -83.7 -25.0 -1.9 5.6 -4.0 25 25 A D H < S+ 0 0 109 -4,-1.2 -2,-0.2 -5,-0.2 -1,-0.1 0.715 102.4 83.9 -89.2 -28.9 1.6 7.4 -3.8 26 26 A R S < S- 0 0 166 -4,-1.6 2,-0.2 -5,-0.2 -5,-0.0 -0.426 111.2 -67.8 -66.5 151.5 -0.0 10.7 -5.4 27 27 A X + 0 0 150 1,-0.1 -1,-0.1 -2,-0.1 -2,-0.1 -0.191 58.6 173.9 -57.7 107.8 -1.8 13.0 -2.7 28 28 A S - 0 0 122 -2,-0.2 -1,-0.1 -4,-0.2 2,-0.1 0.988 42.8-100.6 -78.3 -66.1 -4.9 11.0 -1.4 29 29 A G 0 0 75 1,-0.2 -1,-0.1 0, 0.0 -2,-0.0 -0.417 360.0 360.0 179.8 -96.6 -6.4 13.2 1.6 30 30 A G 0 0 137 -2,-0.1 -1,-0.2 -3,-0.0 -2,-0.1 0.801 360.0 360.0 -91.4 360.0 -5.8 12.5 5.4