==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 26-NOV-96 2PTA . COMPND 2 MOLECULE: PANDINUS TOXIN K-ALPHA; . SOURCE 2 ORGANISM_SCIENTIFIC: PANDINUS IMPERATOR; . AUTHOR T.C.TENENHOLZ,R.S.ROGOWSKI,J.H.COLLINS,M.P.BLAUSTEIN, . 35 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3128.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 57.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 14.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 22.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A T 0 0 166 0, 0.0 2,-0.2 0, 0.0 28,-0.1 0.000 360.0 360.0 360.0 150.7 3.1 -3.8 -7.8 2 5 A I - 0 0 85 2,-0.0 2,-0.7 28,-0.0 8,-0.0 -0.727 360.0-112.4-117.7 170.5 4.4 -0.4 -6.8 3 6 A S + 0 0 59 -2,-0.2 2,-0.4 22,-0.0 24,-0.1 -0.887 42.8 160.2-106.3 114.6 7.5 0.8 -4.8 4 7 A a - 0 0 4 -2,-0.7 25,-0.5 22,-0.3 24,-0.2 -0.924 25.6-175.4-137.8 114.9 6.7 2.2 -1.4 5 8 A T S S+ 0 0 103 -2,-0.4 20,-0.1 23,-0.1 -1,-0.1 0.462 81.1 37.6 -85.1 1.9 9.3 2.5 1.4 6 9 A N S >> S- 0 0 88 1,-0.1 4,-0.7 18,-0.1 3,-0.5 -0.973 77.3-125.6-147.6 160.6 6.5 3.8 3.7 7 10 A P H 3> S+ 0 0 58 0, 0.0 4,-1.7 0, 0.0 16,-0.2 0.776 100.7 76.9 -77.8 -29.7 2.8 3.1 4.3 8 11 A K H 34 S+ 0 0 161 1,-0.2 5,-0.2 2,-0.2 16,-0.1 0.772 96.2 51.6 -54.6 -21.6 1.8 6.8 3.8 9 12 A Q H <> S+ 0 0 124 -3,-0.5 4,-1.7 2,-0.2 -1,-0.2 0.937 113.3 39.0 -82.1 -49.4 2.2 6.0 0.1 10 13 A b H X S+ 0 0 2 -4,-0.7 4,-1.2 1,-0.2 -2,-0.2 0.593 105.1 75.5 -75.9 -6.3 -0.0 2.9 -0.1 11 14 A Y H X S+ 0 0 100 -4,-1.7 4,-1.1 2,-0.2 -1,-0.2 0.994 109.2 23.0 -67.8 -58.8 -2.4 4.7 2.3 12 15 A P H > S+ 0 0 62 0, 0.0 4,-0.7 0, 0.0 5,-0.3 0.888 119.8 59.9 -74.7 -42.6 -3.9 7.1 -0.2 13 16 A H H >X S+ 0 0 71 -4,-1.7 4,-1.7 1,-0.2 3,-0.6 0.929 115.3 36.2 -54.3 -43.5 -3.1 5.0 -3.3 14 17 A c H 3X>S+ 0 0 6 -4,-1.2 4,-1.8 1,-0.2 5,-1.3 0.775 98.1 80.9 -81.4 -24.3 -5.2 2.2 -1.9 15 18 A K H 3<5S+ 0 0 134 -4,-1.1 -1,-0.2 6,-0.2 -2,-0.2 0.757 114.4 19.8 -53.6 -18.5 -7.7 4.7 -0.4 16 19 A K H <<5S+ 0 0 164 -4,-0.7 -1,-0.2 -3,-0.6 -2,-0.2 0.654 116.9 64.8-120.7 -33.5 -9.1 4.8 -4.0 17 20 A E H <5S- 0 0 132 -4,-1.7 -3,-0.2 -5,-0.3 -2,-0.1 0.959 136.0 -3.7 -58.1 -49.1 -7.8 1.6 -5.6 18 21 A T T <5S- 0 0 43 -4,-1.8 -1,-0.2 2,-0.2 -3,-0.2 0.360 97.9-114.1-124.1 1.3 -9.8 -0.6 -3.2 19 22 A G S -A 29 0A 85 3,-1.5 3,-1.9 -2,-0.3 2,-1.1 -0.618 59.6 -29.4-132.5-166.6 7.4 -4.0 2.8 27 30 A N T 3 S- 0 0 137 1,-0.3 3,-0.1 -2,-0.2 -22,-0.1 -0.226 130.0 -35.9 -50.3 90.9 10.7 -4.4 0.9 28 31 A R T 3 S+ 0 0 178 -2,-1.1 -1,-0.3 -24,-0.2 2,-0.3 0.929 125.9 105.4 55.9 43.2 9.5 -2.7 -2.3 29 32 A K E < -A 26 0A 106 -3,-1.9 -3,-1.5 -25,-0.5 2,-0.3 -0.902 56.8-146.5-143.9 172.9 6.0 -4.3 -1.7 30 33 A b E -A 25 0A 35 -2,-0.3 2,-0.6 -5,-0.3 -5,-0.2 -0.952 6.1-170.8-148.8 126.6 2.5 -3.2 -0.6 31 34 A K E -A 24 0A 139 -7,-1.7 -7,-2.0 -2,-0.3 -6,-0.1 -0.754 17.0-168.8-118.8 86.6 -0.1 -5.2 1.4 32 35 A c E -A 23 0A 24 -2,-0.6 3,-0.4 -9,-0.3 -9,-0.2 -0.040 36.8-103.6 -63.8 175.9 -3.3 -3.2 1.4 33 36 A F S S+ 0 0 118 -11,-0.7 -1,-0.1 -13,-0.3 -11,-0.1 -0.183 110.3 8.1 -96.4 43.7 -6.2 -4.3 3.7 34 37 A G 0 0 33 -2,-0.2 -1,-0.2 -14,-0.1 -14,-0.2 0.372 360.0 360.0 148.7 57.4 -8.2 -5.9 0.9 35 38 A R 0 0 272 -3,-0.4 -2,-0.1 0, 0.0 -4,-0.0 0.961 360.0 360.0 -71.1 360.0 -6.4 -6.2 -2.4