==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 29-JUN-03 1PVZ . COMPND 2 MOLECULE: K+ TOXIN-LIKE PEPTIDE; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS MARTENSII; . AUTHOR H.WU,N.ZHANG,Y.WANG,Q.ZHANG,L.OU,M.LI,G.HU . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2288.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 19.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 148 0, 0.0 2,-1.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 114.1 -5.5 -7.0 8.3 2 2 A P + 0 0 69 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.100 360.0 77.9 -78.9 40.9 -2.6 -7.9 6.0 3 3 A F + 0 0 131 -2,-1.0 2,-0.2 25,-0.0 24,-0.1 -0.970 53.0 110.0-152.7 129.3 -4.9 -6.7 3.2 4 4 A A S S+ 0 0 60 -2,-0.3 2,-0.3 22,-0.1 25,-0.1 -0.725 72.5 3.0-167.2-141.2 -5.7 -3.0 2.3 5 5 A I E S-A 28 0A 58 23,-0.6 23,-2.9 25,-0.5 2,-0.2 -0.481 85.3-107.8 -65.1 121.8 -5.0 -0.7 -0.7 6 6 A K E -A 27 0A 129 -2,-0.3 2,-0.3 21,-0.2 21,-0.2 -0.364 50.7-180.0 -61.9 118.4 -3.0 -2.9 -3.3 7 7 A a - 0 0 5 19,-2.5 3,-0.1 -2,-0.2 -1,-0.0 -0.816 36.8-173.8-120.8 154.5 0.7 -1.8 -3.2 8 8 A A S S- 0 0 68 1,-0.5 2,-0.2 -2,-0.3 -1,-0.2 0.712 76.7 -21.1 -96.9 -65.7 4.0 -2.5 -4.9 9 9 A T S >> S- 0 0 69 17,-0.1 4,-2.7 1,-0.0 3,-0.6 -0.829 75.0 -82.2-134.9 169.5 6.3 -0.2 -2.9 10 10 A D H 3> S+ 0 0 94 -2,-0.2 4,-2.8 1,-0.2 5,-0.2 0.897 129.4 54.8 -29.9 -60.6 6.5 2.9 -0.6 11 11 A A H 3> S+ 0 0 55 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.893 108.0 48.5 -48.4 -45.7 6.4 4.9 -3.9 12 12 A D H <> S+ 0 0 17 -3,-0.6 4,-1.6 2,-0.2 -2,-0.2 0.947 107.3 54.6 -64.8 -46.7 3.3 3.1 -5.0 13 13 A b H >X S+ 0 0 0 -4,-2.7 4,-2.8 1,-0.2 3,-0.9 0.958 110.6 47.6 -42.1 -56.3 1.7 3.8 -1.5 14 14 A S H 3< S+ 0 0 25 -4,-2.8 -2,-0.2 7,-0.3 -1,-0.2 0.878 102.1 64.1 -52.0 -47.5 2.5 7.5 -2.3 15 15 A R H 3< S+ 0 0 185 -4,-2.4 -1,-0.3 1,-0.2 -2,-0.2 0.838 115.5 29.9 -48.4 -43.4 1.0 7.1 -5.8 16 16 A K H << S+ 0 0 88 -4,-1.6 -2,-0.2 -3,-0.9 -1,-0.2 0.914 141.4 14.0 -79.7 -51.0 -2.5 6.4 -4.1 17 17 A c S < S- 0 0 26 -4,-2.8 -1,-0.3 -5,-0.2 3,-0.1 -0.967 91.1-128.7-136.7 106.3 -2.0 8.5 -0.9 18 18 A P S S+ 0 0 118 0, 0.0 -3,-0.1 0, 0.0 -4,-0.0 0.036 76.6 67.2 -70.0 168.4 0.9 10.9 -0.9 19 19 A G S S- 0 0 66 1,-0.1 -8,-0.1 2,-0.1 -5,-0.0 0.553 107.8 -89.2 99.9 16.4 3.7 11.4 1.6 20 20 A N - 0 0 112 -9,-0.1 -9,-0.1 -10,-0.1 -1,-0.1 0.879 57.5-171.4 50.8 51.3 5.4 8.0 1.1 21 21 A P - 0 0 25 0, 0.0 -7,-0.3 0, 0.0 -8,-0.2 -0.275 28.7 -99.4 -61.0 157.5 3.5 6.0 3.6 22 22 A P - 0 0 82 0, 0.0 7,-2.8 0, 0.0 2,-0.3 -0.459 28.0-141.8 -80.5 155.7 4.9 2.4 4.2 23 23 A a E -B 28 0A 13 5,-0.3 2,-0.3 -2,-0.1 5,-0.3 -0.857 13.7-171.2-110.4 151.8 3.5 -0.8 2.6 24 24 A R E > S+B 27 0A 199 3,-2.9 3,-2.1 -2,-0.3 -17,-0.1 -0.988 75.1 4.3-142.2 139.2 3.3 -4.2 4.4 25 25 A N T 3 S- 0 0 110 -2,-0.3 -18,-0.1 1,-0.3 3,-0.1 0.799 131.9 -64.0 53.6 30.3 2.4 -7.6 2.8 26 26 A G T 3 S+ 0 0 24 1,-0.2 -19,-2.5 -18,-0.1 2,-0.4 0.779 115.9 114.8 61.1 30.2 2.4 -5.5 -0.5 27 27 A F E < S-AB 6 24A 43 -3,-2.1 -3,-2.9 -21,-0.2 -1,-0.2 -0.985 72.1-112.7-126.9 138.6 -0.6 -3.4 0.8 28 28 A b E -AB 5 23A 1 -23,-2.9 -23,-0.6 -2,-0.4 -5,-0.3 -0.510 15.5-140.5 -73.4 133.9 -0.3 0.3 1.6 29 29 A A S S+ 0 0 71 -7,-2.8 -1,-0.1 -2,-0.2 -6,-0.1 0.742 74.5 97.7 -66.7 -27.3 -0.7 1.2 5.3 30 30 A c 0 0 26 -8,-0.3 -25,-0.5 -13,-0.1 -2,-0.1 -0.322 360.0 360.0 -63.7 145.7 -2.8 4.3 4.5 31 31 A T 0 0 171 -27,-0.1 -1,-0.1 -2,-0.0 -27,-0.1 -0.307 360.0 360.0 -65.0 360.0 -6.6 4.0 4.8