==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 04-JUL-03 1PXQ . COMPND 2 MOLECULE: SUBTILISIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR K.E.KAWULKA,T.SPRULES,R.T.MCKAY,P.MERCIER,C.M.DIAPER,P.ZUBER . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2814.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A N 0 0 116 0, 0.0 3,-0.4 0, 0.0 34,-0.2 0.000 360.0 360.0 360.0 152.8 5.6 3.9 12.9 2 2 A K + 0 0 193 1,-0.2 3,-0.5 33,-0.1 30,-0.1 0.578 360.0 74.1 -72.9 -8.9 3.8 7.2 13.2 3 3 A G S > S+ 0 0 67 1,-0.2 2,-2.1 28,-0.2 3,-0.7 0.938 84.4 60.4 -69.9 -48.0 6.0 8.5 10.4 4 4 A C T 3 + 0 0 11 -3,-0.4 3,-0.4 27,-0.4 -1,-0.2 -0.216 68.6 119.1 -76.6 49.9 4.3 6.6 7.6 5 5 A A T > + 0 0 62 -2,-2.1 3,-1.1 -3,-0.5 -1,-0.2 0.704 56.1 74.7 -86.2 -22.6 1.0 8.4 8.3 6 6 A T T < S+ 0 0 129 -3,-0.7 -1,-0.2 1,-0.3 22,-0.2 0.591 116.4 19.6 -65.8 -9.6 0.8 9.9 4.9 7 7 A C T 3 S+ 0 0 7 -3,-0.4 3,-0.5 21,-0.2 22,-0.4 -0.128 70.8 146.2-154.8 46.1 -0.2 6.5 3.6 8 8 A S < + 0 0 88 -3,-1.1 -2,-0.1 1,-0.2 -3,-0.1 0.721 60.7 86.0 -57.8 -20.8 -1.5 4.5 6.6 9 9 A I S S- 0 0 139 -4,-0.2 -1,-0.2 1,-0.1 2,-0.1 0.947 91.4-127.2 -44.6 -71.6 -3.8 2.9 4.1 10 10 A G - 0 0 21 16,-0.9 2,-0.6 -3,-0.5 18,-0.1 -0.426 18.3 -71.5 131.4 153.5 -1.5 0.1 2.9 11 11 A A + 0 0 58 16,-0.2 2,-0.1 -2,-0.1 13,-0.1 -0.675 65.3 134.9 -81.0 115.5 0.0 -1.4 -0.3 12 12 A A + 0 0 54 -2,-0.6 -1,-0.0 1,-0.1 15,-0.0 -0.548 21.6 172.8-164.2 89.9 -2.6 -3.3 -2.2 13 13 A C - 0 0 22 -2,-0.1 10,-0.8 9,-0.1 -1,-0.1 0.849 29.4-149.7 -66.9 -37.2 -3.0 -2.9 -6.0 14 14 A L > > + 0 0 96 8,-0.1 5,-1.2 6,-0.1 3,-1.2 0.459 60.1 127.1 76.4 1.4 -5.5 -5.7 -6.2 15 15 A V T 3 5 + 0 0 55 1,-0.3 -1,-0.1 4,-0.2 -3,-0.0 0.490 56.6 75.7 -66.7 -2.0 -4.1 -6.3 -9.7 16 16 A D T 3 5S+ 0 0 147 5,-0.0 -1,-0.3 3,-0.0 -2,-0.0 0.107 115.5 5.4 -97.1 21.2 -3.7 -9.9 -8.5 17 17 A G T < 5S+ 0 0 45 -3,-1.2 -2,-0.1 0, 0.0 -3,-0.0 -0.062 135.2 29.2-157.9 -92.9 -7.4 -10.5 -8.9 18 18 A P T 5S- 0 0 109 0, 0.0 -3,-0.2 0, 0.0 -4,-0.1 0.794 97.1-126.3 -54.7 -28.7 -10.0 -8.0 -10.4 19 19 A I < + 0 0 113 -5,-1.2 -4,-0.2 0, 0.0 -5,-0.1 0.774 58.8 148.1 86.0 32.1 -7.0 -6.7 -12.4 20 20 A P - 0 0 48 0, 0.0 -5,-0.1 0, 0.0 -6,-0.1 0.731 57.3-123.8 -68.8 -19.9 -7.3 -3.0 -11.4 21 21 A D - 0 0 81 2,-0.1 3,-0.1 1,-0.0 -5,-0.0 0.722 63.8 -22.9 77.5 119.0 -3.5 -2.7 -11.8 22 22 A F S S+ 0 0 132 1,-0.2 2,-1.6 2,-0.1 3,-0.4 0.668 75.6 171.8 15.5 56.9 -1.2 -1.4 -9.0 23 23 A E + 0 0 103 -10,-0.8 -1,-0.2 1,-0.2 -2,-0.1 -0.502 27.7 126.5 -89.2 69.0 -4.2 0.4 -7.3 24 24 A I - 0 0 47 -2,-1.6 -1,-0.2 -13,-0.1 -14,-0.1 0.908 38.2-172.3 -88.3 -51.6 -2.3 1.3 -4.2 25 25 A A S S+ 0 0 99 -3,-0.4 -16,-0.1 -16,-0.1 -2,-0.1 0.794 79.3 28.8 60.8 28.6 -2.9 5.1 -4.1 26 26 A G > + 0 0 22 -17,-0.1 3,-1.0 -18,-0.1 -16,-0.9 0.242 55.1 179.5 148.6 78.8 -0.5 5.3 -1.1 27 27 A A T > + 0 0 45 1,-0.2 3,-2.6 2,-0.1 -16,-0.2 0.548 62.5 104.2 -72.7 -6.6 2.4 2.8 -0.6 28 28 A X T >> + 0 0 33 1,-0.3 3,-3.3 2,-0.2 4,-0.5 0.768 54.7 89.0 -45.1 -28.9 3.3 4.8 2.5 29 29 A G H X> S+ 0 0 8 -3,-1.0 4,-1.4 -22,-0.4 3,-1.4 0.764 73.5 69.0 -42.6 -30.3 1.7 1.9 4.4 30 30 A L H <> S+ 0 0 74 -3,-2.6 4,-0.8 1,-0.3 -1,-0.3 0.842 87.7 64.3 -60.3 -33.4 5.2 0.3 4.3 31 31 A X H <> S+ 0 0 124 -3,-3.3 4,-0.8 1,-0.2 -27,-0.4 0.765 107.9 42.4 -61.8 -24.4 6.3 3.0 6.7 32 32 A G H << S+ 0 0 36 -3,-1.4 -1,-0.2 -4,-0.5 -2,-0.2 0.739 99.9 69.0 -93.0 -26.6 3.9 1.5 9.2 33 33 A L H < S+ 0 0 148 -4,-1.4 -2,-0.2 1,-0.2 -1,-0.2 0.687 112.7 33.7 -64.7 -17.7 4.7 -2.2 8.5 34 34 A W H < 0 0 236 -4,-0.8 -1,-0.2 -33,-0.1 -2,-0.2 0.681 360.0 360.0-107.6 -28.8 8.1 -1.5 10.1 35 35 A G < 0 0 46 -4,-0.8 -3,-0.3 -5,-0.2 -33,-0.1 0.372 360.0 360.0-146.8 360.0 7.1 1.0 12.8