==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN/RNA 14-MAY-07 2PXP . COMPND 2 MOLECULE: SIGNAL RECOGNITION PARTICLE PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR A.Y.KEEL,R.P.RAMBO,R.T.BATEY,J.S.KIEFT . 69 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4776.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 76.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 18.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 36 52.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F 0 0 99 0, 0.0 2,-0.2 0, 0.0 66,-0.1 0.000 360.0 360.0 360.0 107.6 88.9 -2.5 68.5 2 2 A D >> - 0 0 32 28,-0.1 4,-1.9 29,-0.0 3,-0.8 -0.518 360.0 -87.7-113.8-178.6 90.1 -6.0 69.2 3 3 A L H 3> S+ 0 0 1 25,-1.8 4,-0.7 1,-0.2 26,-0.1 0.689 121.0 67.8 -64.6 -19.0 88.8 -9.6 69.1 4 4 A N H 3> S+ 0 0 43 2,-0.2 4,-0.8 24,-0.1 -1,-0.2 0.926 107.0 39.5 -66.0 -41.4 87.5 -9.2 72.6 5 5 A D H X> S+ 0 0 70 -3,-0.8 3,-2.3 1,-0.2 4,-0.9 0.985 107.3 58.3 -69.7 -61.2 85.0 -6.7 71.2 6 6 A F H 3< S+ 0 0 17 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.701 103.4 60.8 -43.5 -20.2 84.1 -8.4 68.0 7 7 A L H 3< S+ 0 0 42 -4,-0.7 -1,-0.3 -5,-0.2 -2,-0.2 0.867 87.9 66.8 -77.7 -38.8 83.1 -11.2 70.3 8 8 A E H << 0 0 169 -3,-2.3 -2,-0.2 -4,-0.8 -1,-0.2 0.938 360.0 360.0 -44.1 -50.6 80.4 -9.2 72.1 9 9 A Q < 0 0 137 -4,-0.9 -1,-0.1 0, 0.0 0, 0.0 -0.485 360.0 360.0 -65.3 360.0 78.6 -9.3 68.8 10 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 11 23 A K 0 0 136 0, 0.0 4,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -17.8 73.8 -20.8 65.0 12 24 A V > + 0 0 78 2,-0.2 4,-0.9 1,-0.1 5,-0.0 0.524 360.0 66.8-101.2 -14.6 76.9 -20.1 62.9 13 25 A L H > S+ 0 0 58 2,-0.2 4,-2.2 1,-0.2 -1,-0.1 0.663 92.2 62.0 -77.7 -18.0 77.8 -17.4 65.5 14 26 A V H > S+ 0 0 53 2,-0.2 4,-2.5 1,-0.2 -1,-0.2 0.887 101.7 50.1 -72.9 -39.7 78.3 -20.2 68.0 15 27 A R H > S+ 0 0 41 -4,-0.3 4,-1.5 1,-0.2 -2,-0.2 0.823 109.4 53.2 -66.7 -31.6 81.1 -21.6 65.8 16 28 A X H X S+ 0 0 44 -4,-0.9 4,-2.3 2,-0.2 5,-0.2 0.951 108.4 48.2 -68.1 -49.2 82.6 -18.1 65.8 17 29 A E H >X S+ 0 0 99 -4,-2.2 4,-3.5 1,-0.2 3,-0.6 0.980 108.5 54.5 -51.3 -63.1 82.6 -17.9 69.6 18 30 A A H 3< S+ 0 0 38 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.809 108.0 50.2 -39.2 -44.0 84.2 -21.3 69.9 19 31 A I H >< S+ 0 0 7 -4,-1.5 3,-1.3 1,-0.2 -1,-0.3 0.930 113.8 43.6 -66.5 -45.0 87.0 -20.2 67.6 20 32 A I H X< S+ 0 0 3 -4,-2.3 3,-2.0 -3,-0.6 -2,-0.2 0.891 106.4 62.6 -68.4 -34.9 87.6 -17.0 69.6 21 33 A N T 3< S+ 0 0 95 -4,-3.5 -1,-0.3 1,-0.3 -2,-0.2 0.488 96.4 61.7 -67.9 0.8 87.3 -19.0 72.8 22 34 A S T < S+ 0 0 32 -3,-1.3 -1,-0.3 -5,-0.3 -2,-0.2 0.315 90.7 89.3-107.0 8.3 90.4 -21.0 71.7 23 35 A X S < S- 0 0 18 -3,-2.0 2,-0.3 1,-0.1 -3,-0.0 -0.295 74.7-113.5 -96.9-177.3 92.7 -18.1 71.7 24 36 A T > - 0 0 54 -2,-0.1 4,-1.7 1,-0.1 5,-0.2 -0.820 33.8-104.2-114.5 155.8 94.9 -16.4 74.3 25 37 A X H > S+ 0 0 127 -2,-0.3 4,-2.2 1,-0.2 5,-0.2 0.860 124.0 49.3 -46.5 -40.7 94.5 -13.0 75.8 26 38 A K H > S+ 0 0 156 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.934 104.9 57.0 -65.2 -47.1 97.3 -11.8 73.6 27 39 A E H 4 S+ 0 0 0 2,-0.2 -1,-0.2 1,-0.2 -2,-0.2 0.810 112.6 41.5 -54.1 -34.7 95.9 -13.3 70.4 28 40 A R H < S+ 0 0 45 -4,-1.7 -25,-1.8 2,-0.2 -2,-0.2 0.965 114.4 48.8 -77.8 -56.1 92.6 -11.4 70.8 29 41 A A H < S+ 0 0 56 -4,-2.2 -2,-0.2 1,-0.3 -3,-0.2 0.820 131.2 19.6 -52.4 -36.2 94.1 -8.1 71.9 30 42 A K S >< S+ 0 0 105 -4,-2.7 3,-1.5 -5,-0.2 -1,-0.3 -0.543 70.9 173.8-139.8 70.5 96.6 -8.1 69.0 31 43 A P G > + 0 0 15 0, 0.0 3,-3.2 0, 0.0 -1,-0.1 0.786 66.1 79.8 -45.6 -42.3 95.3 -10.6 66.3 32 44 A E G 3 S+ 0 0 113 1,-0.3 -5,-0.1 2,-0.0 -2,-0.0 0.554 82.6 67.2 -50.4 -7.9 98.0 -9.7 63.7 33 45 A I G < S+ 0 0 45 -3,-1.5 2,-1.4 -6,-0.2 -1,-0.3 0.443 74.6 105.5 -91.9 0.8 100.4 -12.0 65.6 34 46 A I < + 0 0 10 -3,-3.2 -1,-0.1 -7,-0.2 -2,-0.0 -0.594 46.1 154.6 -87.2 82.2 98.3 -15.0 64.6 35 47 A K > - 0 0 143 -2,-1.4 4,-2.7 4,-0.0 5,-0.2 0.026 58.5 -58.6 -90.2-160.1 100.2 -16.9 61.9 36 48 A G H > S+ 0 0 45 1,-0.2 4,-2.5 2,-0.2 5,-0.2 0.930 127.5 47.7 -44.2 -73.2 100.2 -20.5 60.8 37 49 A S H > S+ 0 0 92 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.817 115.1 45.1 -40.5 -50.6 101.2 -22.3 64.0 38 50 A R H > S+ 0 0 96 2,-0.2 4,-2.9 1,-0.2 -1,-0.2 0.970 110.4 54.4 -64.0 -49.7 98.7 -20.5 66.1 39 51 A K H X S+ 0 0 55 -4,-2.7 4,-3.0 1,-0.2 -2,-0.2 0.940 107.8 51.6 -46.6 -56.8 95.9 -20.9 63.6 40 52 A R H X S+ 0 0 167 -4,-2.5 4,-1.9 1,-0.2 5,-0.4 0.922 110.8 46.5 -44.7 -57.4 96.5 -24.6 63.6 41 53 A R H X S+ 0 0 103 -4,-2.2 4,-1.7 1,-0.2 -1,-0.2 0.915 114.4 48.6 -52.6 -47.2 96.3 -24.8 67.4 42 54 A I H X S+ 0 0 0 -4,-2.9 4,-1.9 2,-0.2 6,-0.3 0.879 112.4 47.3 -60.5 -45.2 93.1 -22.7 67.4 43 55 A A H ><>S+ 0 0 4 -4,-3.0 5,-2.3 -5,-0.2 3,-1.3 1.000 115.4 42.2 -60.6 -71.0 91.4 -24.7 64.7 44 56 A A H ><5S+ 0 0 82 -4,-1.9 3,-0.9 1,-0.3 -1,-0.2 0.800 114.0 58.5 -47.2 -30.2 92.1 -28.1 66.1 45 57 A G H 3<5S+ 0 0 52 -4,-1.7 -1,-0.3 -5,-0.4 -2,-0.2 0.866 108.6 39.5 -71.2 -38.4 91.2 -26.6 69.5 46 58 A S T <<5S- 0 0 15 -4,-1.9 -1,-0.3 -3,-1.3 -2,-0.2 -0.201 118.0-105.3-104.0 39.8 87.7 -25.4 68.6 47 59 A G T < 5S+ 0 0 59 -3,-0.9 -3,-0.2 1,-0.1 2,-0.1 0.755 86.6 118.7 43.0 31.9 87.0 -28.6 66.7 48 60 A X < - 0 0 58 -5,-2.3 2,-0.3 -6,-0.3 -1,-0.1 -0.377 65.2-110.5-110.9-170.6 87.3 -26.5 63.5 49 61 A Q >> - 0 0 119 -2,-0.1 4,-1.2 -3,-0.1 3,-0.9 -0.854 33.9-108.5-120.3 156.9 89.5 -26.4 60.4 50 62 A V H >> S+ 0 0 52 -2,-0.3 4,-2.8 1,-0.3 3,-0.5 0.878 115.6 59.5 -56.3 -42.7 92.1 -23.7 59.7 51 63 A Q H 3> S+ 0 0 141 1,-0.3 4,-3.2 2,-0.2 -1,-0.3 0.829 101.4 56.2 -56.4 -32.3 90.1 -22.2 56.8 52 64 A D H <> S+ 0 0 64 -3,-0.9 4,-2.4 2,-0.2 -1,-0.3 0.880 108.7 46.7 -66.4 -38.8 87.3 -21.5 59.3 53 65 A V H X S+ 0 0 21 -4,-3.0 4,-2.1 -3,-0.2 3,-1.5 0.914 110.8 57.7 -70.7 -42.0 87.6 -3.7 62.2 65 77 A R H 3< S+ 0 0 150 -4,-3.9 -2,-0.2 1,-0.3 -1,-0.2 0.918 101.7 53.8 -52.3 -48.3 88.2 -2.1 58.8 66 78 A X T 3< S+ 0 0 146 -4,-2.6 3,-0.4 1,-0.2 -1,-0.3 0.701 108.9 52.8 -61.5 -18.0 84.7 -0.7 58.8 67 79 A X T X4 S+ 0 0 72 -3,-1.5 2,-1.6 -4,-0.4 3,-0.5 0.882 95.1 64.0 -83.2 -44.7 85.6 0.7 62.2 68 80 A K T 3< S+ 0 0 90 -4,-2.1 -1,-0.2 1,-0.3 -2,-0.1 -0.027 96.1 69.5 -71.3 36.4 88.7 2.5 61.1 69 81 A K T 3 0 0 165 -2,-1.6 -1,-0.3 -3,-0.4 -2,-0.1 -0.207 360.0 360.0-149.4 46.2 86.3 4.6 59.0 70 82 A X < 0 0 215 -3,-0.5 -2,-0.1 0, 0.0 -3,-0.1 -0.119 360.0 360.0 171.0 360.0 84.3 6.6 61.5