==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SIGNALING PROTEIN/RNA 14-MAY-07 2PXV . COMPND 2 MOLECULE: SIGNAL RECOGNITION PARTICLE PROTEIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.Y.KEEL,R.P.RAMBO,R.T.BATEY,J.S.KIEFT . 69 2 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4640.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 56 81.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 17 24.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 35 50.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A F 0 0 80 0, 0.0 2,-0.1 0, 0.0 67,-0.1 0.000 360.0 360.0 360.0 91.1 153.7 115.2 36.0 2 2 A D >> - 0 0 46 1,-0.1 3,-2.0 28,-0.0 4,-1.7 -0.476 360.0 -92.3 -95.4 170.0 155.4 112.0 36.9 3 3 A L T 34 S+ 0 0 0 25,-1.2 4,-0.3 1,-0.3 26,-0.2 0.593 121.1 72.6 -56.7 -9.6 154.2 108.4 36.5 4 4 A N T 3> S+ 0 0 42 24,-0.7 4,-0.7 2,-0.2 -1,-0.3 0.852 103.2 36.6 -74.6 -35.4 152.9 108.8 40.0 5 5 A D H X> S+ 0 0 70 -3,-2.0 3,-1.2 2,-0.2 4,-0.9 0.924 110.3 60.0 -80.1 -49.4 150.1 111.1 38.9 6 6 A F H 3< S+ 0 0 9 -4,-1.7 -1,-0.2 1,-0.3 -2,-0.2 0.640 99.5 63.0 -54.4 -12.8 149.5 109.3 35.6 7 7 A L H 34 S+ 0 0 37 -4,-0.3 -1,-0.3 -5,-0.2 -2,-0.2 0.901 89.7 62.5 -79.4 -42.7 148.7 106.3 37.9 8 8 A E H << 0 0 168 -3,-1.2 -2,-0.2 -4,-0.7 -1,-0.2 0.842 360.0 360.0 -49.7 -35.0 145.7 108.0 39.6 9 9 A Q < 0 0 134 -4,-0.9 -2,-0.2 0, 0.0 -3,-0.1 0.906 360.0 360.0 -82.4 360.0 144.2 108.0 36.1 10 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 11 23 A K > 0 0 120 0, 0.0 4,-0.5 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 5.4 141.2 94.0 33.2 12 24 A V T 4 - 0 0 103 1,-0.1 3,-0.2 2,-0.1 4,-0.2 0.996 360.0 -6.1 -59.7 -76.0 140.8 97.0 30.9 13 25 A L T >> S+ 0 0 52 1,-0.2 3,-1.0 2,-0.2 4,-1.0 0.603 118.7 88.5 -95.0 -16.9 143.0 99.6 32.7 14 26 A V H 3> S+ 0 0 51 1,-0.3 4,-1.8 2,-0.2 -1,-0.2 0.797 92.4 46.2 -50.6 -30.6 143.5 97.2 35.6 15 27 A R H 3X S+ 0 0 27 -4,-0.5 4,-1.5 2,-0.2 -1,-0.3 0.724 102.6 61.5 -85.4 -24.2 146.5 95.9 33.7 16 28 A X H <> S+ 0 0 58 -3,-1.0 4,-0.6 2,-0.2 -2,-0.2 0.619 110.0 44.7 -76.0 -10.7 147.8 99.4 32.8 17 29 A E H >X S+ 0 0 89 -4,-1.0 4,-3.0 2,-0.2 3,-0.5 0.856 103.3 61.4 -93.1 -51.2 148.0 99.8 36.6 18 30 A A H 3< S+ 0 0 35 -4,-1.8 -2,-0.2 1,-0.3 -3,-0.1 0.834 101.8 56.8 -42.2 -41.3 149.7 96.4 37.2 19 31 A I H >< S+ 0 0 8 -4,-1.5 3,-1.2 1,-0.2 -1,-0.3 0.942 111.0 39.3 -59.5 -52.5 152.5 97.6 35.0 20 32 A I H X< S+ 0 0 2 -4,-0.6 3,-2.5 -3,-0.5 -2,-0.2 0.877 105.7 66.1 -67.6 -36.5 153.3 100.7 37.1 21 33 A N T 3< S+ 0 0 94 -4,-3.0 -1,-0.3 1,-0.3 -2,-0.2 0.387 100.9 55.4 -65.9 10.2 152.7 98.7 40.3 22 34 A S T < S+ 0 0 34 -3,-1.2 -1,-0.3 -5,-0.3 -2,-0.2 0.455 92.6 87.8-118.2 -7.4 155.8 96.9 39.1 23 35 A X S < S- 0 0 12 -3,-2.5 2,-0.3 -4,-0.2 3,-0.0 -0.141 74.7-117.3 -82.9-178.5 158.0 99.9 38.8 24 36 A T > - 0 0 63 1,-0.1 4,-2.8 -2,-0.0 5,-0.3 -0.814 30.2-103.7-117.0 160.2 160.3 101.5 41.5 25 37 A X H > S+ 0 0 128 -2,-0.3 4,-1.1 1,-0.2 5,-0.2 0.913 122.7 51.2 -49.2 -48.0 160.0 105.0 42.9 26 38 A K H > S+ 0 0 163 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.896 112.6 46.7 -57.4 -42.4 163.0 106.2 40.8 27 39 A E H >4 S+ 0 0 1 -3,-0.3 3,-1.1 1,-0.2 -24,-0.2 0.973 112.1 48.1 -63.8 -55.9 161.4 104.7 37.7 28 40 A R H 3< S+ 0 0 44 -4,-2.8 -25,-1.2 1,-0.2 -24,-0.7 0.631 116.7 47.2 -60.6 -12.9 157.9 106.2 38.3 29 41 A A H 3< S+ 0 0 53 -4,-1.1 -1,-0.2 -5,-0.3 -2,-0.2 0.610 127.1 18.4-106.1 -14.2 159.6 109.5 39.0 30 42 A K X< - 0 0 108 -4,-1.1 3,-0.6 -3,-1.1 -1,-0.2 -0.401 66.0-178.0-157.4 67.7 162.1 109.8 36.1 31 43 A P G > + 0 0 23 0, 0.0 3,-2.1 0, 0.0 -3,-0.1 0.613 65.6 89.9 -42.6 -26.0 160.9 107.5 33.3 32 44 A E G 3 S+ 0 0 114 1,-0.3 -5,-0.1 2,-0.1 3,-0.1 0.332 82.2 61.2 -64.1 15.0 163.9 108.4 31.0 33 45 A I G < + 0 0 42 -3,-0.6 2,-0.9 -6,-0.2 -1,-0.3 0.158 69.5 106.6-124.0 15.8 165.7 105.5 32.7 34 46 A I < + 0 0 8 -3,-2.1 -1,-0.1 -7,-0.1 -2,-0.1 -0.421 47.5 153.0 -96.0 59.9 163.5 102.6 31.7 35 47 A K > - 0 0 137 -2,-0.9 4,-2.4 3,-0.1 5,-0.2 0.116 60.9 -61.2 -73.1-168.4 165.7 101.0 29.0 36 48 A G H > S+ 0 0 47 1,-0.2 4,-2.2 2,-0.2 3,-0.4 0.899 129.2 46.6 -39.0 -78.3 165.8 97.4 28.0 37 49 A S H > S+ 0 0 90 1,-0.3 4,-1.2 2,-0.2 -1,-0.2 0.829 113.4 49.0 -36.5 -55.3 166.7 95.6 31.2 38 50 A R H >> S+ 0 0 83 2,-0.2 4,-3.4 1,-0.2 3,-1.0 0.948 111.0 51.1 -55.1 -50.8 164.2 97.5 33.3 39 51 A K H 3X S+ 0 0 48 -4,-2.4 4,-3.2 -3,-0.4 5,-0.2 0.969 105.3 53.8 -50.3 -61.6 161.4 96.8 30.8 40 52 A R H 3X S+ 0 0 167 -4,-2.2 4,-0.8 1,-0.2 -1,-0.3 0.779 115.2 44.3 -46.5 -25.2 162.2 93.1 30.7 41 53 A R H <>S+ 0 0 3 -4,-3.2 5,-1.9 2,-0.2 3,-1.4 0.998 114.2 40.0 -61.4 -72.6 156.9 93.4 31.9 44 56 A A H ><5S+ 0 0 79 -4,-0.8 3,-1.0 1,-0.3 -1,-0.2 0.785 114.4 60.3 -48.4 -26.4 157.3 89.9 33.4 45 57 A G H 3<5S+ 0 0 47 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.899 109.5 38.2 -70.1 -41.0 156.7 91.7 36.7 46 58 A S T <<5S- 0 0 13 -4,-1.9 -1,-0.3 -3,-1.4 -2,-0.2 -0.033 116.0-111.6 -98.8 30.9 153.2 92.8 35.6 47 59 A G T < 5S+ 0 0 60 -3,-1.0 -3,-0.2 1,-0.1 -4,-0.1 0.630 88.0 108.3 50.9 14.1 152.6 89.5 33.9 48 60 A X < - 0 0 61 -5,-1.9 2,-0.3 -6,-0.3 -1,-0.1 0.208 70.0-105.5 -94.4-145.9 152.7 91.6 30.6 49 61 A Q >> - 0 0 111 1,-0.1 4,-2.0 -3,-0.1 3,-0.8 -0.978 29.3-106.1-148.5 150.9 155.2 91.8 27.8 50 62 A V H 3> S+ 0 0 54 -2,-0.3 4,-3.5 1,-0.3 5,-0.3 0.893 121.2 55.8 -45.7 -49.9 157.8 94.5 26.9 51 63 A Q H 3> S+ 0 0 127 1,-0.2 4,-2.4 2,-0.2 -1,-0.3 0.900 106.2 52.2 -49.9 -45.3 155.6 95.6 24.0 52 64 A D H <> S+ 0 0 58 -3,-0.8 4,-2.3 2,-0.2 -1,-0.2 0.952 111.4 46.2 -55.1 -52.4 152.8 96.1 26.5 53 65 A V H X S+ 0 0 1 -4,-2.0 4,-3.7 1,-0.2 5,-0.2 0.938 109.5 53.7 -56.5 -50.0 155.1 98.3 28.7 54 66 A N H X S+ 0 0 57 -4,-3.5 4,-2.8 1,-0.2 -1,-0.2 0.894 107.3 54.1 -52.2 -39.9 156.3 100.2 25.6 55 67 A R H X S+ 0 0 51 -4,-2.4 4,-2.5 -5,-0.3 -2,-0.2 0.983 111.7 41.4 -57.2 -60.1 152.6 100.8 25.0 56 68 A L H X S+ 0 0 3 -4,-2.3 4,-2.9 1,-0.2 -2,-0.2 0.874 112.5 56.4 -55.8 -40.5 152.0 102.3 28.4 57 69 A L H X S+ 0 0 30 -4,-3.7 4,-1.9 1,-0.2 -1,-0.2 0.929 108.0 47.5 -58.0 -45.3 155.3 104.1 28.2 58 70 A K H X S+ 0 0 106 -4,-2.8 4,-2.1 -5,-0.2 -2,-0.2 0.917 110.2 53.9 -62.0 -42.6 154.1 105.7 25.0 59 71 A Q H X S+ 0 0 82 -4,-2.5 4,-2.6 1,-0.2 5,-0.3 0.961 104.9 52.4 -57.1 -54.2 150.8 106.6 26.7 60 72 A F H X S+ 0 0 26 -4,-2.9 4,-1.1 1,-0.2 -1,-0.2 0.910 107.1 54.1 -47.2 -50.6 152.5 108.4 29.6 61 73 A D H >X S+ 0 0 43 -4,-1.9 4,-3.3 2,-0.2 3,-1.0 0.944 109.3 46.7 -50.5 -55.2 154.5 110.5 27.2 62 74 A D H 3X S+ 0 0 77 -4,-2.1 4,-1.5 1,-0.3 -2,-0.2 0.962 114.6 45.8 -51.4 -57.6 151.3 111.6 25.4 63 75 A X H 3< S+ 0 0 56 -4,-2.6 4,-0.5 1,-0.2 -1,-0.3 0.640 118.3 49.3 -61.1 -12.8 149.6 112.4 28.7 64 76 A Q H XX S+ 0 0 17 -4,-1.1 4,-1.4 -3,-1.0 3,-0.9 0.928 100.0 56.2 -90.7 -60.9 152.8 114.1 29.6 65 77 A R H 3< S+ 0 0 152 -4,-3.3 3,-0.3 1,-0.3 -2,-0.2 0.823 103.2 58.9 -41.5 -43.5 153.7 116.4 26.7 66 78 A X T >< S+ 0 0 92 -4,-1.5 3,-3.1 -5,-0.3 -1,-0.3 0.943 101.3 53.3 -54.1 -51.2 150.3 118.1 27.1 67 79 A X G X4 S+ 0 0 92 -3,-0.9 3,-0.9 -4,-0.5 -1,-0.3 0.863 109.0 51.1 -51.6 -37.7 151.1 119.1 30.6 68 80 A K G 3< S+ 0 0 87 -4,-1.4 -1,-0.3 -3,-0.3 -2,-0.2 0.258 113.1 46.4 -84.8 11.4 154.3 120.6 29.2 69 81 A K G < 0 0 164 -3,-3.1 -1,-0.2 -5,-0.2 -2,-0.2 0.145 360.0 360.0-136.2 16.3 152.2 122.5 26.6 70 82 A X < 0 0 201 -3,-0.9 -3,-0.2 -4,-0.2 -2,-0.1 0.034 360.0 360.0-176.6 360.0 149.5 123.9 28.8