==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 16-MAY-07 2PYA . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: PYROCOCCUS ABYSSI; . AUTHOR H.BOENISCH,R.LADENSTEIN . 52 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3614.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 55.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 17.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 3 5.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A A 0 0 44 0, 0.0 13,-2.7 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 164.6 -6.8 20.4 9.3 2 3 A K E -AB 13 51A 87 49,-0.7 49,-2.4 11,-0.2 2,-0.4 -0.943 360.0-166.4-126.5 146.2 -5.0 19.1 6.2 3 4 A L E -AB 12 50A 8 9,-2.4 9,-2.9 -2,-0.3 2,-0.4 -0.997 13.9-138.7-135.2 133.2 -1.3 18.9 5.3 4 5 A S E -AB 11 49A 39 45,-2.5 45,-1.9 -2,-0.4 2,-0.4 -0.707 18.4-125.6 -88.1 136.9 0.3 18.2 1.9 5 6 A C E - B 0 48A 2 5,-2.5 3,-0.5 -2,-0.4 43,-0.2 -0.643 18.1-147.0 -70.1 128.6 3.3 15.9 1.5 6 7 A K S S+ 0 0 127 41,-2.9 -1,-0.1 -2,-0.4 42,-0.1 0.779 92.5 50.3 -67.4 -24.1 5.9 18.1 -0.4 7 8 A I S S+ 0 0 100 40,-0.2 2,-0.3 3,-0.0 -1,-0.2 0.553 118.9 10.3-101.5 -12.3 7.3 15.1 -2.2 8 9 A C S S- 0 0 39 -3,-0.5 -3,-0.1 2,-0.2 33,-0.0 -0.909 86.3 -87.1-152.0-176.5 4.2 13.4 -3.7 9 10 A G S S+ 0 0 72 -2,-0.3 -3,-0.0 -5,-0.1 2,-0.0 0.475 79.7 122.4 -78.7 -3.2 0.4 13.9 -4.2 10 11 A Y - 0 0 38 -6,-0.1 -5,-2.5 1,-0.0 2,-0.4 -0.314 43.2-163.1 -64.0 146.3 -0.6 12.5 -0.7 11 12 A I E -A 4 0A 86 -7,-0.2 2,-0.7 37,-0.0 -7,-0.2 -0.999 11.4-145.2-128.8 122.7 -2.6 14.8 1.7 12 13 A Y E -A 3 0A 0 -9,-2.9 -9,-2.4 -2,-0.4 2,-0.6 -0.833 17.5-170.5 -87.6 113.1 -2.9 13.9 5.4 13 14 A D E >> -A 2 0A 28 -2,-0.7 3,-2.1 4,-0.4 4,-2.0 -0.939 19.9-145.8-103.4 120.4 -6.4 15.0 6.6 14 15 A E T 34 S+ 0 0 37 -13,-2.7 12,-2.2 -2,-0.6 13,-0.2 0.812 101.5 57.9 -54.7 -31.4 -6.7 14.8 10.4 15 16 A D T 34 S+ 0 0 115 -14,-0.3 -1,-0.3 10,-0.2 -13,-0.1 0.644 112.4 41.2 -73.3 -16.3 -10.4 13.8 9.9 16 17 A E T <4 S- 0 0 125 -3,-2.1 -2,-0.2 9,-0.1 -1,-0.2 0.712 86.9-170.7 -92.7 -34.0 -9.2 10.7 7.8 17 18 A G < - 0 0 3 -4,-2.0 -4,-0.4 10,-0.2 7,-0.2 -0.330 43.6 -83.2 63.1-158.0 -6.1 9.5 9.8 18 19 A D B > > +C 23 0B 12 5,-1.7 5,-2.1 -6,-0.1 3,-1.3 -0.630 57.3 169.5-140.7 67.2 -3.9 6.9 8.1 19 20 A P G > 5 + 0 0 90 0, 0.0 3,-1.5 0, 0.0 5,-0.1 0.799 68.1 62.4 -65.2 -31.3 -5.9 3.7 9.0 20 21 A D G 3 5S+ 0 0 156 1,-0.3 4,-0.1 2,-0.1 -2,-0.0 0.782 111.0 41.6 -64.2 -25.9 -4.2 1.2 6.8 21 22 A N G < 5S- 0 0 107 -3,-1.3 -1,-0.3 2,-0.2 3,-0.1 0.148 130.3 -90.6-106.3 13.7 -0.9 1.9 8.8 22 23 A G T < 5S+ 0 0 66 -3,-1.5 2,-0.6 1,-0.2 -2,-0.1 0.666 85.0 126.1 92.0 20.2 -2.6 2.0 12.2 23 24 A I B < -C 18 0B 21 -5,-2.1 -5,-1.7 -7,-0.1 -1,-0.2 -0.938 53.1-137.1-111.3 114.3 -3.5 5.8 12.7 24 25 A S > - 0 0 82 -2,-0.6 3,-1.6 -7,-0.2 -7,-0.1 -0.284 28.6 -90.6 -69.5 151.6 -7.2 6.2 13.5 25 26 A P T 3 S+ 0 0 85 0, 0.0 -10,-0.2 0, 0.0 -9,-0.1 -0.304 113.4 39.3 -52.7 143.3 -9.4 8.9 11.9 26 27 A G T 3 S+ 0 0 48 -12,-2.2 2,-0.5 1,-0.3 -11,-0.2 0.278 77.2 142.1 92.0 -1.4 -9.3 12.1 14.0 27 28 A T < - 0 0 31 -3,-1.6 -1,-0.3 -13,-0.2 -10,-0.2 -0.527 48.1-133.2 -76.5 120.1 -5.6 11.9 14.9 28 29 A K >> - 0 0 90 -2,-0.5 3,-1.6 1,-0.1 4,-0.5 -0.362 17.2-116.9 -69.1 151.8 -4.1 15.4 14.8 29 30 A F G >4 S+ 0 0 43 1,-0.3 3,-1.6 2,-0.2 -1,-0.1 0.905 116.8 59.0 -54.8 -40.8 -0.8 16.0 13.0 30 31 A E G 34 S+ 0 0 134 1,-0.3 -1,-0.3 0, 0.0 -3,-0.0 0.739 105.3 51.3 -58.7 -25.7 0.9 16.9 16.3 31 32 A D G <4 S+ 0 0 98 -3,-1.6 -1,-0.3 2,-0.1 -2,-0.2 0.409 79.1 112.0 -96.5 -3.8 -0.1 13.4 17.7 32 33 A L S << S- 0 0 4 -3,-1.6 4,-0.0 -4,-0.5 -9,-0.0 -0.530 80.8-102.6 -63.2 138.5 1.4 11.4 14.8 33 34 A P > - 0 0 59 0, 0.0 3,-2.2 0, 0.0 -1,-0.1 -0.173 25.9-109.8 -62.1 157.6 4.3 9.4 16.2 34 35 A D T 3 S+ 0 0 163 1,-0.3 11,-0.3 -3,-0.1 -2,-0.1 0.755 118.9 55.4 -60.2 -22.4 7.8 10.6 15.5 35 36 A D T 3 S+ 0 0 137 9,-0.1 2,-0.3 2,-0.0 -1,-0.3 0.218 79.7 121.8 -95.8 12.0 8.3 7.5 13.2 36 37 A W < + 0 0 13 -3,-2.2 9,-0.7 -4,-0.0 2,-0.3 -0.604 38.4 178.1 -73.6 137.5 5.3 8.3 11.1 37 38 A V B -D 44 0C 66 -2,-0.3 6,-0.1 7,-0.2 5,-0.1 -0.895 41.3 -73.4-131.4 162.9 6.0 8.8 7.3 38 39 A C > - 0 0 3 5,-2.8 4,-2.0 -2,-0.3 7,-0.0 -0.311 39.6-136.9 -52.7 130.4 4.0 9.5 4.2 39 40 A P T 4 S+ 0 0 47 0, 0.0 -1,-0.2 0, 0.0 -21,-0.0 0.665 99.5 38.5 -65.4 -21.1 2.1 6.2 3.2 40 41 A L T 4 S+ 0 0 129 3,-0.1 -2,-0.1 -32,-0.0 -31,-0.0 0.819 132.9 14.1 -96.3 -43.9 2.9 6.7 -0.5 41 42 A C T 4 S- 0 0 53 2,-0.1 -3,-0.1 -33,-0.0 0, 0.0 0.421 90.0-121.3-120.6 -1.4 6.6 8.0 -0.6 42 43 A G < + 0 0 41 -4,-2.0 0, 0.0 1,-0.2 0, 0.0 0.550 55.1 153.8 76.4 6.1 8.0 7.5 2.9 43 44 A S - 0 0 17 -6,-0.1 -5,-2.8 1,-0.1 -1,-0.2 -0.413 41.9-114.7 -74.4 147.6 8.9 11.2 3.5 44 45 A P B > -D 37 0C 57 0, 0.0 3,-2.4 0, 0.0 -7,-0.2 -0.136 29.3 -94.1 -79.9 174.2 9.0 12.3 7.2 45 46 A K G > S+ 0 0 42 -9,-0.7 3,-1.8 1,-0.3 -8,-0.1 0.804 120.9 68.2 -55.7 -32.3 6.8 14.7 9.1 46 47 A S G 3 S+ 0 0 91 1,-0.3 -1,-0.3 3,-0.0 -3,-0.0 0.629 94.3 58.5 -63.2 -14.5 9.3 17.5 8.3 47 48 A E G < S+ 0 0 60 -3,-2.4 -41,-2.9 2,-0.0 2,-0.3 0.241 89.5 92.1 -99.8 12.7 8.3 17.3 4.6 48 49 A F E < -B 5 0A 8 -3,-1.8 2,-0.3 -43,-0.2 -43,-0.2 -0.824 51.9-176.0-106.7 145.0 4.6 18.1 5.3 49 50 A E E -B 4 0A 129 -45,-1.9 -45,-2.5 -2,-0.3 -3,-0.0 -1.000 32.0-101.1-139.9 140.7 3.0 21.6 5.3 50 51 A R E +B 3 0A 167 -2,-0.3 2,-0.3 -47,-0.3 -47,-0.3 -0.263 40.6 174.0 -56.2 141.1 -0.5 22.8 6.1 51 52 A I E B 2 0A 73 -49,-2.4 -49,-0.7 0, 0.0 -1,-0.0 -0.923 360.0 360.0-134.1 162.9 -2.8 23.5 3.1 52 53 A E 0 0 242 -2,-0.3 -49,-0.0 -51,-0.1 0, 0.0 -0.422 360.0 360.0 -68.5 360.0 -6.7 24.6 3.2