==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 25-JUL-03 1Q2K . COMPND 2 MOLECULE: NEUROTOXIN BMK37; . SOURCE 2 SYNTHETIC: YES; . AUTHOR Z.CAI,C.XU,Y.XU,W.LU,C.W.CHI,Y.SHI,J.WU . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2696.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 61.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 25.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 145 0, 0.0 2,-0.6 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 118.1 -1.4 -10.5 -9.2 2 2 A A - 0 0 88 1,-0.0 2,-0.6 2,-0.0 23,-0.1 -0.759 360.0-140.6 -89.6 121.7 -2.0 -10.8 -5.4 3 3 A a - 0 0 48 -2,-0.6 2,-0.5 21,-0.2 19,-0.1 -0.712 19.8-169.5 -84.8 121.1 -2.3 -7.4 -3.6 4 4 A Y > - 0 0 157 -2,-0.6 4,-2.9 1,-0.1 5,-0.2 -0.941 23.2-152.3-115.3 131.2 -0.6 -7.4 -0.2 5 5 A S H > S+ 0 0 60 -2,-0.5 4,-2.2 1,-0.2 15,-0.2 0.787 100.9 54.3 -68.1 -27.0 -1.0 -4.6 2.3 6 6 A S H > S+ 0 0 78 2,-0.2 4,-1.8 3,-0.2 -1,-0.2 0.902 112.9 40.8 -73.3 -41.2 2.5 -5.4 3.7 7 7 A D H > S+ 0 0 90 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.932 114.7 52.8 -70.6 -45.6 4.1 -5.1 0.3 8 8 A b H X S+ 0 0 1 -4,-2.9 4,-1.7 1,-0.2 13,-0.2 0.932 108.9 50.0 -52.3 -52.0 2.1 -2.0 -0.6 9 9 A R H X S+ 0 0 127 -4,-2.2 4,-3.5 11,-0.6 5,-0.2 0.902 107.9 52.7 -55.5 -46.2 3.2 -0.4 2.7 10 10 A V H X S+ 0 0 94 -4,-1.8 4,-2.0 1,-0.3 -1,-0.2 0.902 109.4 49.6 -58.3 -40.6 6.8 -1.2 1.9 11 11 A K H X S+ 0 0 107 -4,-2.3 4,-1.0 1,-0.2 -1,-0.3 0.805 114.2 46.2 -67.2 -29.3 6.4 0.5 -1.5 12 12 A c H <>S+ 0 0 1 -4,-1.7 5,-0.7 -5,-0.2 -2,-0.2 0.889 108.9 53.0 -80.0 -41.3 4.8 3.5 0.3 13 13 A V H ><5S+ 0 0 88 -4,-3.5 3,-0.6 1,-0.2 -2,-0.2 0.872 114.9 43.3 -60.7 -36.6 7.5 3.7 3.1 14 14 A A H 3<5S+ 0 0 86 -4,-2.0 -1,-0.2 -5,-0.2 -2,-0.2 0.762 112.7 52.3 -79.3 -27.5 10.1 3.8 0.3 15 15 A M T 3<5S- 0 0 141 -4,-1.0 -1,-0.2 -5,-0.2 -2,-0.2 0.237 132.0 -87.6 -93.0 13.7 8.1 6.3 -1.8 16 16 A G T < 5S+ 0 0 61 -3,-0.6 2,-0.3 1,-0.2 -3,-0.2 0.974 83.7 126.5 80.5 64.8 7.7 8.6 1.2 17 17 A F < - 0 0 65 -5,-0.7 -1,-0.2 -4,-0.2 14,-0.2 -0.935 64.3-125.1-145.3 165.6 4.6 7.5 3.1 18 18 A S S S- 0 0 92 12,-1.2 2,-0.3 -2,-0.3 13,-0.2 0.467 85.0 -40.7 -92.1 -2.3 3.5 6.5 6.6 19 19 A S - 0 0 19 -10,-0.1 11,-3.5 -11,-0.1 2,-0.3 -0.968 55.1-135.7 165.7-174.0 2.1 3.1 5.4 20 20 A G E -A 29 0A 5 9,-0.3 -11,-0.6 -2,-0.3 9,-0.3 -0.976 12.6-177.2-168.0 157.5 0.2 1.2 2.7 21 21 A K E -A 28 0A 68 7,-2.6 7,-2.2 -2,-0.3 2,-0.4 -0.809 24.4-111.0-146.2-173.1 -2.6 -1.4 2.1 22 22 A a E -A 27 0A 31 5,-0.3 5,-0.2 -2,-0.2 -17,-0.2 -0.992 24.4-177.4-135.3 128.0 -4.5 -3.3 -0.5 23 23 A I - 0 0 99 3,-1.9 -20,-0.1 -2,-0.4 4,-0.0 0.145 69.5 -32.4 -96.9-146.2 -8.1 -2.9 -1.5 24 24 A N S S- 0 0 163 1,-0.2 -21,-0.2 2,-0.1 3,-0.1 0.863 131.3 -39.7 -39.7 -44.8 -10.1 -5.0 -4.1 25 25 A S S S+ 0 0 78 1,-0.1 2,-0.4 -23,-0.1 -1,-0.2 0.089 117.5 99.1-177.1 35.4 -6.8 -5.2 -6.0 26 26 A K - 0 0 154 -23,-0.1 -3,-1.9 2,-0.0 2,-0.2 -0.968 63.8-129.7-141.4 123.2 -5.1 -1.8 -5.7 27 27 A b E -A 22 0A 62 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.3 -0.487 25.3-166.8 -71.6 132.8 -2.3 -0.7 -3.3 28 28 A K E -A 21 0A 132 -7,-2.2 -7,-2.6 -2,-0.2 2,-0.3 -0.910 13.0-130.4-121.2 147.2 -3.0 2.5 -1.4 29 29 A c E -A 20 0A 33 -2,-0.3 2,-1.0 -9,-0.3 -9,-0.3 -0.737 9.1-135.2-101.5 148.6 -0.5 4.6 0.6 30 30 A Y 0 0 102 -11,-3.5 -12,-1.2 -2,-0.3 -10,-0.1 -0.539 360.0 360.0 -97.9 64.1 -1.0 5.9 4.2 31 31 A K 0 0 221 -2,-1.0 -1,-0.2 -14,-0.2 -13,-0.0 0.884 360.0 360.0 -40.9 360.0 0.2 9.5 3.5