==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METALLOTHIONEIN 24-JUN-99 1QJK . COMPND 2 MOLECULE: METALLOTHIONEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: STRONGYLOCENTROTUS PURPURATUS; . AUTHOR R.RIEK,B.PRECHEUR,Y.WANG,E.A.MACKAY,G.WIDER,P.GUNTERT,A.LIU, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2891.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 36.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A P 0 0 157 0, 0.0 8,-0.1 0, 0.0 9,-0.0 0.000 360.0 360.0 360.0 45.2 -8.8 -1.2 -8.6 2 3 A D + 0 0 155 0, 0.0 2,-0.3 0, 0.0 7,-0.0 -0.295 360.0 101.7-173.3 74.7 -10.1 -0.8 -5.1 3 4 A V - 0 0 48 1,-0.1 20,-0.2 6,-0.1 21,-0.1 -0.904 58.2-137.0-151.0 175.4 -7.5 -0.0 -2.4 4 5 A K S S+ 0 0 153 18,-0.8 2,-2.0 19,-0.3 19,-0.2 0.594 82.8 91.1-111.4 -23.1 -6.2 2.8 -0.3 5 6 A C >> - 0 0 0 17,-1.2 4,-3.3 1,-0.2 3,-2.1 -0.566 58.7-169.2 -77.8 82.7 -2.5 1.9 -0.7 6 7 A V H 3> S+ 0 0 79 -2,-2.0 4,-1.2 1,-0.3 6,-0.4 0.761 80.9 76.7 -43.3 -26.8 -1.9 4.0 -3.8 7 8 A C H 3>>S+ 0 0 18 1,-0.2 5,-2.2 2,-0.2 4,-1.6 0.942 114.1 17.2 -49.8 -54.7 1.4 2.1 -3.8 8 9 A C H <45S+ 0 0 41 -3,-2.1 -2,-0.2 2,-0.2 -1,-0.2 0.784 122.0 64.2 -87.3 -32.6 -0.5 -0.9 -5.1 9 10 A T H <5S+ 0 0 63 -4,-3.3 -3,-0.2 1,-0.2 -2,-0.2 0.539 114.5 35.4 -67.4 -5.7 -3.4 1.1 -6.2 10 11 A E H <5S- 0 0 120 -4,-1.2 -2,-0.2 -5,-0.4 -1,-0.2 0.716 112.8-112.6-113.1 -42.6 -0.9 2.8 -8.6 11 12 A G T <5 + 0 0 64 -4,-1.6 -3,-0.2 -5,-0.4 -4,-0.1 0.530 64.3 144.4 114.3 16.3 1.3 -0.1 -9.6 12 13 A K < - 0 0 118 -5,-2.2 2,-0.7 -6,-0.4 -1,-0.1 -0.139 63.3 -75.5 -76.0 177.0 4.5 1.1 -7.8 13 14 A E - 0 0 171 2,-0.0 2,-0.3 4,-0.0 -1,-0.1 -0.688 54.6-173.7 -81.2 114.3 7.0 -1.2 -6.2 14 15 A C - 0 0 29 -2,-0.7 3,-0.0 1,-0.1 19,-0.0 -0.803 24.3-163.5-109.0 151.1 5.7 -2.4 -2.9 15 16 A A S S+ 0 0 64 -2,-0.3 -1,-0.1 1,-0.1 -2,-0.0 0.519 97.2 42.2-105.9 -13.2 7.5 -4.4 -0.2 16 17 A C S S+ 0 0 22 11,-0.0 6,-0.2 3,-0.0 5,-0.1 -0.024 85.6 156.0-120.5 25.3 4.4 -5.4 1.6 17 18 A F + 0 0 152 1,-0.2 3,-0.1 4,-0.1 4,-0.1 -0.007 57.9 30.6 -49.9 158.7 2.4 -6.1 -1.6 18 19 A G S S+ 0 0 64 1,-0.2 2,-0.2 2,-0.1 -1,-0.2 0.939 99.0 119.7 52.0 55.0 -0.5 -8.6 -1.4 19 20 A Q S S- 0 0 103 1,-0.1 4,-0.4 -3,-0.0 -1,-0.2 -0.745 73.9-118.3-135.7-177.7 -1.2 -7.7 2.2 20 21 A D S > S+ 0 0 117 -2,-0.2 4,-2.3 2,-0.2 3,-0.4 0.731 108.0 67.9 -95.2 -29.9 -4.0 -6.2 4.4 21 22 A C H > S+ 0 0 17 1,-0.3 6,-1.4 2,-0.2 4,-0.6 0.690 96.9 59.5 -62.4 -17.2 -2.0 -3.2 5.5 22 23 A C H 4 S+ 0 0 5 -6,-0.2 -17,-1.2 3,-0.2 -18,-0.8 0.886 106.7 44.1 -77.0 -41.9 -2.4 -2.2 1.8 23 24 A V H 4 S+ 0 0 83 -3,-0.4 -19,-0.3 -4,-0.4 -2,-0.2 0.988 118.1 41.3 -65.0 -61.9 -6.2 -2.2 2.0 24 25 A T H < S- 0 0 59 -4,-2.3 -1,-0.2 1,-0.1 -2,-0.2 0.748 102.9-138.0 -57.6 -23.9 -6.4 -0.4 5.3 25 26 A G >< + 0 0 4 -4,-0.6 3,-3.5 -5,-0.4 -3,-0.2 0.623 57.4 142.9 72.9 13.6 -3.6 1.8 4.0 26 27 A E T 3 S+ 0 0 97 -5,-0.3 3,-0.5 1,-0.3 -4,-0.1 0.654 71.9 56.6 -58.4 -14.7 -2.1 1.6 7.4 27 28 A C T 3 S+ 0 0 23 -6,-1.4 -1,-0.3 1,-0.2 7,-0.1 0.245 110.9 43.2 -99.1 9.4 1.2 1.5 5.4 28 29 A C S < S+ 0 0 54 -3,-3.5 -1,-0.2 -7,-0.2 -2,-0.2 -0.102 102.6 67.3-143.4 34.0 0.2 4.8 3.8 29 30 A K S S+ 0 0 128 -3,-0.5 -1,-0.1 3,-0.3 -3,-0.1 -0.258 92.9 50.4-152.2 52.0 -1.1 6.7 6.7 30 31 A D S S- 0 0 149 -3,-0.1 3,-0.1 2,-0.1 -3,-0.1 0.325 125.5 -49.4-150.9 -54.8 1.9 7.4 8.9 31 32 A G S S- 0 0 70 1,-0.4 2,-0.3 -4,-0.1 -4,-0.1 0.273 101.5 -33.2-160.5 -46.2 4.7 8.9 7.0 32 33 A T - 0 0 114 -5,-0.0 -1,-0.4 3,-0.0 2,-0.3 -0.923 55.6-101.3-168.1-171.8 5.4 6.8 3.9 33 34 A C S S+ 0 0 22 -2,-0.3 -5,-0.1 -5,-0.1 -6,-0.0 -0.852 74.4 22.9-127.7 162.9 5.4 3.4 2.3 34 35 A C + 0 0 54 -2,-0.3 -20,-0.1 -7,-0.1 -21,-0.0 0.361 50.3 146.3 60.7 155.9 8.1 0.8 1.6 35 36 A G 0 0 70 -3,-0.0 -1,-0.1 0, 0.0 -3,-0.0 0.437 360.0 360.0 143.0 55.0 11.4 0.8 3.4 36 37 A I 0 0 204 0, 0.0 -21,-0.0 0, 0.0 0, 0.0 0.088 360.0 360.0 -39.4 360.0 12.8 -2.7 3.9