==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER XYLANASE 26-AUG-99 1QLD . COMPND 2 MOLECULE: XYLANASE; . SOURCE 2 ORGANISM_SCIENTIFIC: PSEUDOMONAS FLUORESCENS; . AUTHOR S.RAGHOTHAMA,P.J.SIMPSON,H.J.GILBERT,M.P.WILLIAMSON . 50 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3603.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 58.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 24.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 12.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 4.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 20 A M 0 0 242 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-171.7 -5.1 -11.3 1.6 2 21 A G + 0 0 72 2,-0.0 2,-0.2 0, 0.0 0, 0.0 -0.110 360.0 151.4-170.9 58.8 -2.8 -9.6 -0.9 3 22 A N - 0 0 153 45,-0.1 2,-0.3 43,-0.0 43,-0.0 -0.648 29.5-145.4 -96.4 156.0 -3.0 -5.8 -0.8 4 23 A Q - 0 0 57 -2,-0.2 11,-1.3 11,-0.1 2,-0.2 -0.864 9.4-152.0-119.3 155.1 -0.1 -3.4 -1.8 5 24 A Q E -A 14 0A 71 42,-0.7 2,-0.6 -2,-0.3 7,-0.0 -0.719 17.2-121.0-123.4 172.9 0.9 -0.1 -0.3 6 25 A a E -A 13 0A 0 7,-2.4 2,-2.0 40,-0.2 7,-0.7 -0.680 11.7-161.9-115.1 82.5 2.6 3.1 -1.5 7 26 A N E -AB 12 45A 34 38,-3.2 2,-1.2 -2,-0.6 38,-0.8 -0.367 26.2-157.0 -59.1 88.1 5.7 3.8 0.6 8 27 A W E > -A 11 0A 32 -2,-2.0 3,-3.0 3,-1.7 -1,-0.1 -0.618 55.7 -61.4 -78.5 100.7 5.4 7.3 -0.8 9 28 A Y T 3 S- 0 0 123 -2,-1.2 -1,-0.2 1,-0.3 35,-0.1 0.773 122.6 -30.8 31.8 28.5 8.9 8.8 -0.5 10 29 A G T 3 S+ 0 0 52 1,-0.5 -1,-0.3 33,-0.1 -2,-0.1 -0.219 126.8 89.5 128.5 -46.7 8.3 8.2 3.2 11 30 A T E < S-A 8 0A 82 -3,-3.0 -3,-1.7 -4,-0.1 -1,-0.5 -0.086 72.0-123.8 -73.1-179.1 4.5 8.7 3.6 12 31 A L E +A 7 0A 78 -5,-0.2 -5,-0.2 -3,-0.1 -1,-0.0 -0.985 29.2 173.2-133.6 128.6 2.1 5.7 3.2 13 32 A Y E -A 6 0A 68 -7,-0.7 -7,-2.4 -2,-0.4 34,-0.2 -0.979 34.6-111.8-134.3 149.2 -0.9 5.5 0.8 14 33 A P E -A 5 0A 30 0, 0.0 18,-2.0 0, 0.0 2,-0.4 -0.517 41.7-111.0 -75.5 139.2 -3.3 2.8 -0.1 15 34 A L B -c 32 0B 26 -11,-1.3 2,-1.3 16,-0.3 18,-0.2 -0.589 17.1-148.4 -79.8 131.8 -2.8 1.5 -3.7 16 35 A b + 0 0 2 16,-2.0 18,-0.5 -2,-0.4 6,-0.2 -0.690 21.0 175.1 -94.2 82.8 -5.6 2.3 -6.1 17 36 A V S > S+ 0 0 68 -2,-1.3 3,-1.5 1,-0.2 17,-0.2 0.923 83.2 48.0 -59.6 -40.7 -5.4 -0.7 -8.4 18 37 A T T 3 S+ 0 0 114 1,-0.3 3,-0.5 -3,-0.2 -1,-0.2 0.932 118.7 40.5 -66.6 -37.7 -8.5 0.4 -10.3 19 38 A T T > S+ 0 0 41 1,-0.2 3,-0.5 2,-0.1 14,-0.3 0.184 78.8 120.1 -92.5 21.5 -6.9 3.9 -10.5 20 39 A T T < + 0 0 52 -3,-1.5 16,-0.3 1,-0.3 2,-0.3 0.683 58.7 81.5 -58.3 -9.4 -3.5 2.1 -11.1 21 40 A N T 3 S- 0 0 158 -3,-0.5 -1,-0.3 -5,-0.2 2,-0.3 -0.100 121.4 -50.5 -87.1 36.5 -3.9 4.1 -14.3 22 41 A G S < S- 0 0 26 -3,-0.5 11,-0.8 -2,-0.3 2,-0.2 -0.872 101.9 -18.2 126.9-160.9 -2.5 7.1 -12.3 23 42 A W E +D 32 0B 126 -2,-0.3 2,-0.2 9,-0.2 9,-0.2 -0.548 67.1 170.4 -79.9 145.5 -3.5 8.7 -9.0 24 43 A G E -D 31 0B 15 7,-2.5 7,-1.5 -2,-0.2 2,-0.4 -0.813 29.6-122.5-141.7-177.1 -6.9 7.8 -7.6 25 44 A W E +D 30 0B 153 5,-0.3 2,-0.3 -2,-0.2 5,-0.2 -0.944 43.5 135.1-137.5 116.5 -9.0 8.1 -4.4 26 45 A E E > +D 29 0B 97 3,-0.7 3,-1.4 -2,-0.4 -2,-0.0 -0.946 47.7 50.4-150.7 171.0 -10.5 5.2 -2.5 27 46 A D T 3 S- 0 0 118 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 0.861 126.6 -68.3 65.5 31.1 -10.9 3.8 1.0 28 47 A Q T 3 S+ 0 0 185 1,-0.2 -1,-0.3 -3,-0.1 2,-0.2 0.746 127.2 67.5 60.1 18.3 -12.3 7.2 2.0 29 48 A R E < S- D 0 26B 164 -3,-1.4 -3,-0.7 -15,-0.0 2,-0.5 -0.757 100.6 -65.7-146.7-166.4 -8.7 8.5 1.4 30 49 A S E - D 0 25B 32 -5,-0.2 2,-0.4 -2,-0.2 -5,-0.3 -0.799 44.7-163.9 -95.5 128.0 -6.3 9.0 -1.5 31 50 A b E - D 0 24B 2 -7,-1.5 -7,-2.5 -2,-0.5 2,-0.4 -0.910 10.5-141.1-112.1 135.4 -5.1 5.8 -3.2 32 51 A I E -cD 15 23B 0 -18,-2.0 -16,-2.0 -2,-0.4 -9,-0.2 -0.779 31.8-100.7 -96.4 135.4 -2.0 5.8 -5.5 33 52 A A > - 0 0 0 -11,-0.8 4,-1.1 -2,-0.4 -13,-0.3 0.203 44.9 -91.8 -40.9 172.4 -2.1 3.7 -8.7 34 53 A R H > S+ 0 0 119 -18,-0.5 4,-2.5 -17,-0.2 5,-0.5 0.983 119.4 19.1 -57.5 -82.4 -0.3 0.2 -8.6 35 54 A S H 4>S+ 0 0 62 1,-0.3 5,-1.9 2,-0.2 -1,-0.1 0.969 123.9 57.2 -58.6 -50.1 3.2 1.0 -9.9 36 55 A T H 45S+ 0 0 44 -16,-0.3 -1,-0.3 3,-0.2 -2,-0.2 0.884 113.7 47.1 -48.2 -30.0 2.9 4.7 -9.1 37 56 A a H <5S- 0 0 0 -4,-1.1 8,-0.6 -3,-0.5 -2,-0.2 0.987 141.9 -10.1 -72.2 -76.2 2.2 3.2 -5.7 38 57 A A T <5S+ 0 0 4 -4,-2.5 -3,-0.2 -5,-0.2 8,-0.1 0.897 118.4 77.0 -93.8 -54.4 4.9 0.7 -5.2 39 58 A A T 5S+ 0 0 70 -5,-0.5 -3,-0.2 6,-0.2 -4,-0.2 0.791 76.4 107.3 -29.2 -35.0 6.6 0.3 -8.6 40 59 A Q S - 0 0 87 0, 0.0 3,-1.0 0, 0.0 -32,-0.2 -0.114 66.6 -33.3 -73.6 173.8 12.0 3.4 -6.7 42 61 A A T 3 S+ 0 0 87 1,-0.4 3,-0.1 -3,-0.1 -4,-0.0 -0.456 126.4 19.7 -79.8 156.4 13.2 2.9 -3.1 43 62 A P T 3 S+ 0 0 93 0, 0.0 -1,-0.4 0, 0.0 -33,-0.1 -0.962 120.8 76.2 -78.2 13.9 12.6 3.6 -0.5 44 63 A F < + 0 0 46 -3,-1.0 2,-0.3 -35,-0.1 -36,-0.2 -0.298 68.0 85.9 -71.3 164.7 9.3 4.1 -2.3 45 64 A G B S-B 7 0A 11 -38,-0.8 -38,-3.2 -8,-0.6 2,-0.4 -0.944 78.1 -13.2 142.4-166.6 7.3 1.0 -3.2 46 65 A I - 0 0 97 -2,-0.3 -40,-0.2 -40,-0.2 2,-0.2 -0.584 60.0-173.7 -74.8 125.6 4.7 -1.6 -1.9 47 66 A V + 0 0 40 -2,-0.4 -42,-0.7 -34,-0.2 -9,-0.0 -0.562 34.6 112.9-109.8 178.2 4.2 -1.3 1.8 48 67 A G + 0 0 56 -2,-0.2 2,-0.7 -44,-0.1 -45,-0.1 0.665 24.8 158.1 121.9 61.7 2.1 -3.5 4.2 49 68 A S 0 0 125 1,-0.2 -1,-0.1 0, 0.0 -2,-0.0 -0.746 360.0 360.0-115.5 86.4 4.3 -5.5 6.6 50 69 A G 0 0 156 -2,-0.7 -1,-0.2 0, 0.0 -2,-0.0 0.932 360.0 360.0 -81.8 360.0 2.2 -6.5 9.6