==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=10-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEINS 09-SEP-99 1QLO . COMPND 2 MOLECULE: HERPES SIMPLEX VIRUS PROTEIN ICP47; . SOURCE 2 ORGANISM_SCIENTIFIC: HERPES SIMPLEX VIRUS; . AUTHOR R.PFAENDER,L.NEUMANN,M.ZWECKSTETTER,C.SEGER,T.A.HOLAK, . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4307.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 64.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 14.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 222 0, 0.0 3,-1.0 0, 0.0 4,-0.2 0.000 360.0 360.0 360.0 -76.5 -15.7 10.2 14.8 2 2 A S T 3 - 0 0 87 1,-0.2 2,-0.6 2,-0.1 0, 0.0 0.033 360.0 -60.8 54.5-175.0 -16.7 11.1 11.2 3 3 A W T 3 S- 0 0 233 1,-0.1 -1,-0.2 0, 0.0 5,-0.1 -0.310 80.9 -84.4 -97.7 52.8 -17.5 8.3 8.8 4 4 A A S <> S+ 0 0 63 -3,-1.0 4,-2.0 -2,-0.6 3,-0.2 0.868 86.2 145.2 52.9 32.2 -14.1 6.6 9.0 5 5 A L H > + 0 0 95 2,-0.2 4,-2.3 -4,-0.2 5,-0.2 0.972 62.3 58.2 -67.3 -51.8 -13.1 9.1 6.3 6 6 A E H > S+ 0 0 142 1,-0.3 4,-1.1 2,-0.2 -1,-0.2 0.830 112.3 45.1 -48.6 -27.8 -9.5 9.6 7.6 7 7 A M H > S+ 0 0 116 2,-0.2 4,-1.4 -3,-0.2 -1,-0.3 0.879 105.3 58.6 -84.4 -39.3 -9.2 5.8 7.0 8 8 A A H X S+ 0 0 46 -4,-2.0 4,-2.5 1,-0.2 5,-0.3 0.894 104.1 54.4 -57.6 -37.0 -10.9 5.8 3.6 9 9 A D H X S+ 0 0 103 -4,-2.3 4,-2.0 1,-0.2 -1,-0.2 0.988 108.6 44.9 -62.1 -57.2 -8.2 8.2 2.3 10 10 A T H X S+ 0 0 84 -4,-1.1 4,-1.6 -5,-0.2 -1,-0.2 0.754 112.4 58.7 -59.5 -18.5 -5.3 5.9 3.4 11 11 A F H < S+ 0 0 122 -4,-1.4 -2,-0.2 2,-0.2 -1,-0.2 0.978 106.3 41.4 -75.7 -58.4 -7.4 3.1 1.8 12 12 A L H >< S+ 0 0 137 -4,-2.5 3,-0.8 1,-0.2 -2,-0.2 0.834 112.8 59.8 -58.9 -27.1 -7.7 4.5 -1.7 13 13 A D H 3< S+ 0 0 133 -4,-2.0 -1,-0.2 -5,-0.3 -2,-0.2 0.955 121.4 22.1 -66.9 -47.2 -4.0 5.4 -1.3 14 14 A N T 3< S+ 0 0 131 -4,-1.6 2,-1.4 -3,-0.2 4,-0.3 -0.104 85.5 128.4-110.0 36.0 -2.9 1.8 -0.8 15 15 A M < + 0 0 101 -3,-0.8 2,-1.1 1,-0.1 -1,-0.1 -0.232 22.2 137.0 -85.2 50.8 -6.0 0.2 -2.4 16 16 A R S S- 0 0 203 -2,-1.4 -1,-0.1 1,-0.1 -4,-0.0 -0.354 95.3 -70.0 -93.0 57.5 -3.8 -2.0 -4.6 17 17 A V S S- 0 0 143 -2,-1.1 -1,-0.1 3,-0.0 -2,-0.1 0.806 91.5 -76.3 64.5 25.0 -5.9 -5.2 -4.2 18 18 A G S S- 0 0 41 -4,-0.3 2,-0.1 2,-0.0 -3,-0.0 0.043 70.7 -56.9 71.8 169.2 -4.7 -5.3 -0.6 19 19 A P - 0 0 127 0, 0.0 3,-0.1 0, 0.0 -5,-0.0 -0.298 42.0-175.7 -78.4 164.4 -1.2 -6.4 0.5 20 20 A R - 0 0 226 1,-0.4 2,-0.3 -2,-0.1 -3,-0.0 0.608 59.0 -26.1-128.9 -51.7 0.2 -9.9 -0.3 21 21 A T > - 0 0 72 1,-0.1 4,-0.6 2,-0.0 -1,-0.4 -0.983 41.6-130.1-160.7 167.0 3.6 -10.4 1.4 22 22 A Y H > S+ 0 0 199 -2,-0.3 4,-1.7 3,-0.1 5,-0.3 0.800 101.0 60.4 -96.1 -34.1 6.6 -8.4 2.7 23 23 A A H > S+ 0 0 73 3,-0.2 4,-1.8 2,-0.2 -1,-0.1 0.905 113.4 39.2 -62.0 -37.3 9.5 -10.3 1.0 24 24 A D H > S+ 0 0 64 2,-0.2 4,-1.5 1,-0.1 3,-0.5 0.978 118.8 40.7 -75.7 -74.6 8.0 -9.4 -2.4 25 25 A V H X S+ 0 0 82 -4,-0.6 4,-0.6 1,-0.3 -2,-0.2 0.844 118.2 54.4 -44.1 -32.1 6.8 -5.8 -2.1 26 26 A R H >< S+ 0 0 158 -4,-1.7 3,-1.5 1,-0.2 -1,-0.3 0.954 101.8 53.2 -70.7 -48.0 10.0 -5.3 -0.1 27 27 A D H >X S+ 0 0 84 -4,-1.8 3,-1.3 -3,-0.5 4,-1.2 0.741 96.9 72.0 -60.6 -16.5 12.4 -6.6 -2.8 28 28 A E H 3X S+ 0 0 81 -4,-1.5 4,-1.6 1,-0.3 -1,-0.3 0.890 87.3 60.6 -67.5 -34.7 10.7 -4.1 -5.1 29 29 A I H << S+ 0 0 110 -3,-1.5 -1,-0.3 -4,-0.6 -2,-0.2 0.267 103.2 57.1 -77.3 20.3 12.4 -1.2 -3.3 30 30 A N H X4 S+ 0 0 93 -3,-1.3 3,-0.7 3,-0.1 -2,-0.2 0.752 116.9 22.7-111.5 -64.4 15.7 -2.8 -4.4 31 31 A K H 3< S+ 0 0 197 -4,-1.2 -2,-0.1 1,-0.2 -3,-0.1 0.745 125.5 55.8 -77.6 -20.7 15.7 -3.1 -8.2 32 32 A R T 3< S+ 0 0 179 -4,-1.6 -1,-0.2 -5,-0.3 -4,-0.1 -0.234 80.1 131.3-104.0 46.5 13.1 -0.3 -8.4 33 33 A G < 0 0 51 -3,-0.7 -3,-0.1 1,-0.1 -2,-0.1 0.345 360.0 360.0 -73.7-146.0 15.1 2.3 -6.4 34 34 A R 0 0 309 -5,-0.1 -1,-0.1 0, 0.0 -2,-0.0 -0.830 360.0 360.0 -98.0 360.0 15.6 5.9 -7.7